
Mobile Agent Based Advanced Service
Architecture for H.323 Internet Protocol

Telephony

by
Jingrong Tang, B.Eng.

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

Master of Electrical Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Faculty of Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada K1S 5B6

July 7, 2000

© Copyright 2000, Jingrong Tang

The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis

“Mobile Agent Based Advanced Service Architecture for H.323
Internet Protocol Telephony”

submitted by Jingrong Tang, B.Eng.

in partial fulfillment of the requirements for the degree of

Master of Electrical Engineering

Department Chair: Rafik Goubran

Thesis Supervisor: Bernard Pagurek

Thesis Supervisor: Tony White

Carleton University

July 7, 2000

I

Abstract

Internet Protocol (IP) based communication is fast becoming a viable alternative for voice

communications. While the Intelligent Network (IN) represents the world wide accepted

basis for the uniform provision of advanced telecom services, mobile agents offer unique

opportunities for structuring and implementing open distributed service architectures,

facilitated by the dynamic downloading and movement of service code to specific network

nodes. In this thesis, a new service architecture for ITU-T standard H.323 based IP

Telephony is proposed. The new service architecture uses Mobile Agents and Jini as

enabling technologies. It also makes use of the existing architectural concepts of IN. This

IP service architecture enables telecom services being deployed through mobile service

agents on a per user basis, which results in several advantages when compared to

centralized service architectures. The thesis demonstrates that the proposed service

architecture not only can accommodate existing services but is flexible and extensible

enough to accommodate a wide variety of future services. In addition, it is shown that the

new architecture addresses the full management life-cycle of advanced services, from

open third party creation to subscription and utilization, and ultimately to maintenance

and withdrawal.

II

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisors, Prof. Bernard

Pagurek and Dr. Tony White, for their invaluable guidance, inspiration, encouragement

and patience throughout the research work and the preparation of this thesis. Their

constant striving for creative and rigorous research influenced many aspects of my life. I

benefitted greatly from their profound knowledge and experience in the field.

I am grateful to all my colleagues who are in the Network Management lab, for their help.

I would also like to thank Mr. Roch Glitho and Ericsson Research Canada for providing

the thesis project and their financial support.

Finally, I would like to thank my family, without their immeasurable love, support and

encouragement, I would not have achieved what I did.

List of Figures

VI

List of Figures

Figure 2.1 H.323 Scope...7

Figure 2.2 Single Gatekeeper Routed Call Signaling...10

Figure 3.1 IN Approach...20

Figure 4.1 Jini Architecture...27

Figure 5.1 MA Based Advanced Service Architecture for IP Telephony39

Figure 5.2 SCC Uploads VPN Service Proxy onto the Lookup Service...............41

Figure 5.3 ESC Downloads VPN Service Proxy Object.......................................42

Figure 5.4 ESC Uploads an Enterprise Service Proxy onto an Enterprise Lookup

Service..42

Figure 5.5 User Service Agent ..44

Figure 5.6 Services Subscription and Activation ..46

Figure 5.7 VPN Service Subscription ..50

Figure 5.8 CFU (End-to-end call Signaling) Invocation52

Figure 5.9 CFU (Gatekeeper Routed Call Signaling) Invocation54

Figure 5.10 CT (Gatekeeper Routed Call Signaling) Invocation56

Figure 5.11 VPN Service Invocation - OGA/OGR (Gatekeeper Routed Call Signal-

ing) ...58

Figure 6.1 Hierarchical Component Structure of Grasshopper............................60

Figure 6.2 Multi-Protocol Support ...65

Figure 6.3 Location Transparent Communication of Grasshopper65

Figure 6.4 Access of an Agent’s Methods..68

List of Gigures

VII

Figure 6.5 Basic Call Model..72

Figure 6.6 Class Diagram..75

Figure 6.7 Component Service Creator Proxy Implementation...........................78

Figure 6.8 Enterprise Service Creator Proxy Implementation78

Figure 6.9 Service Component Creator..78

Figure 6.10 Enterprise Service Creator Implementation..79

Figure 6.11 SMU Implementation...79

Figure 6.12 User Service Agent Creation Code Example.......................................80

Figure 6.13 The UserServiceAgent ID is Stored in the SMU.................................80

Figure 6.14 A Sample Implementation of Method live() of USA...........................81

Figure 6.15 Sample Implementation of action() Method..82

Figure 6.16 Advanced Service Subscription GUI ...83

Figure 6.17 Service Customization Form for CFU ...83

Figure 6.18 TalkServer Message Log...84

Figure 6.19 Caller Messaging Information Log..84

Figure 6.20 Message log of Forwarded-to Terminal ...85

Figure 6.21 Message log of the forwarded-to Terminal ...85

Figure 6.22 USA Construction..86

Figure 6.23 USA Moving to the End User’s Agency...86

Figure 6.24 Instantiation of a CA...87

Table of Contents

III

Table of Contents

Abstract... I

Acknowledgement .. II

Table of Contents ..III

List of Figures..VI

Chapter 1 Introduction...1

1.1 Motivation and Objective..1

1.2 Thesis Contribution...2

1.3 Thesis Organization ..3

Chapter 2 IP Telephony Related Standards ...4

2.1 ITU-T Recommendation H.323..4

2.1.1 H.323 ...4

2.1.2 H.225.0/RAS/Q.931/H.245...7

2.2 A Close Look at H.323 Service Architecture ...11

2.2.1 Service Life Cycle and Service Architecture Requirements.................11

2.2.2 Limitations of H.323 Supported Service Architecture12

Chapter 3 Existing Service Architectures for Traditional Telephony..................15

3.1 Telecommunications Information Networking Architecture15

3.2 Telecommunications Management Network ..17

3.3 Intelligent Networks..18

3.3.1 Intelligent Networks and Service Independent Building Blocks...........19

Chapter 4 Enabling Technologies for A New Advanced Service Architecture ...23

4.1 Mobile Agent Technology ..24

Table of Contents

IV

4.2 Jini ..27

4.2.1 The Discovery Process...29

4.2.2 The Join Process ..30

4.2.3 The Lookup Process...31

4.2.4 Client / Server Interaction..31

4.2.5 The Jini Technology Programming Model ..33

4.3 JavaBeans..35

Chapter 5 Mobile Agent Based Advanced Service Architecture..........................37

5.1 A New Advanced Service Architecture Based on Mobile Agent38

5.2 Service Subscription and Utilization Using Mobile Agents...........................41

5.3 Usage Scenarios for the New Service Architecture ..49

5.3.1 VPN Service Subscription ...50

5.3.2 Call Forwarding Unconditional Invocation ...51

5.3.2.1 CFU Invocation Using End-to-end Call Signaling51

5.3.2.2 CFU Invocation Using Gatekeeper Routed Call Signaling53

5.3.3 Call Transfer Invocation ..54

5.3.4 Outgoing Call Allowance/Outgoing Call Restriction Invocation..........56

Chapter 6 Implementation of the MA Based Advanced Service Architecture

Using Grasshopper ..59

6.1 Grasshopper - Mobile Agent Programming Environment..............................59

6.1.1 Grasshopper Platform ..59

6.1.1.1 Distributed Agent Environment..60

6.1.1.2 Agencies ..61

6.1.1.2.1 Core Agency ..61

6.1.1.2.2 Places ..63

6.1.1.3 Regions ..63

6.1.1.4 Communication Concepts...64

6.1.1.4.1 Multi-protocol Support ..64

Table of Contents

V

6.1.1.4.2 Location Transparency...65

6.1.1.5 Agent Development ..66

6.1.1.5.1 Accessing the Grasshopper Functionality............................66

6.1.1.5.2 Agent Class Structure ..67

6.1.1.6 Remotely Accessible Functionality ..69

6.1.1.6.1 The AgentSystem Interface..69

6.1.1.6.2 The AgentSystemListener Interface70

6.1.1.6.3 The RegionRegistration Interface..70

6.2 Grasshopper’s Limitations ..70

6.3 Implementation of the New Service Architecture...71

6.3.1 Design Issues ...71

6.3.1.1 Platforms and Enabling Technologies ..71

6.3.1.2 Implementation Basis..72

6.3.2 Class Diagram..74

6.3.3 Service Subscription and Realization Using Jini77

6.3.4 Service Utilization Realization Using Grasshopper80

6.3.5 Simulation Results ...82

6.3.6 Limitation of the Simulation..87

Chapter 7 Conclusions And Future Work..89

7.1 Conclusions...89

7.2 Future Work ..90

Appendix A Acronyms ...92

Appendix B References ..94

Introduction

1

Chapter 1 Introduction

1.1 Motivation and Objective

Internet Protocol telephony or IP telephony [1] refers to communication services -

voice, facsimile, and/or voice-messaging applications - that are transported via the

Internet, rather than the Public Switched Telephone Network (PSTN). In February

1995, when Vocaltec, Inc. introduced its Internet Phone software [2], the possibil-

ity of voice communications traveling over the Internet became a reality for the

first time. Because of the low price and efficient use of bandwidth, it has pro-

gressed rapidly in a relatively short period of time.

As the Internet is an open, distributed and evolving entity, it is expected that there

will be many extensions to IP telephony. Now it is still a challenging task to pro-

vide high quality and reliable voice calls over internet, but it is evident that provid-

ing advanced voice services will make IP telephony more competitive in the

telephony market and more appealing to consumers. Because the existing IP tele-

phony advanced service architecture is not very suitable for the provisioning of

advanced IP telephony services, sound service architectures are needed for the

control and management of services. Designing a new service architecture which

is more open and more flexible becomes the main motivation of this thesis.

Introduction

2

The objective of this thesis is to investigate the current IP telephony protocols and

analyze their pros and cons for IP telephony service provisioning, and to propose a

new service architecture for advanced IP based telephony services.

1.2 Thesis Contribution

In this thesis, H.323 [3] - an IP telephony protocol which was under review when

this project started is analyzed. The emphasis of the analysis is placed on its suit-

ability for supplementary services such as Call Redirection, Call Transfer, etc.

which are offered by today’s traditional telephony carriers. Other H.323 related

protocols such as H.225 [4], H.245 [5], H.450 [6, 7, 8], etc. are also reviewed to

give a whole picture of the H.323 protocol. Through the analysis, it is found that

H.323 based service architecture will be quite complicated. Under H.323, each

individual service needs a separate specification. Further more, service creation,

deployment and withdrawal are not clearly addressed. A new service architecture

based on Mobile Agent (MA) technology and Intelligent Networks (IN) is pro-

posed. The proposed service architecture will be more open and flexible for provi-

sioning advanced services of IP telephony.

Existing service architectures are also studied. These architectures include IN

which is commonly used in PSTN for advanced telephony services, Telecommuni-

cation Information Network Architecture (TINA) which is a service architecture to

provide means to build and support telephony services, and Telecommunication

Management Network (TMN) which aims at the operation, administration, main-

Introduction

3

tenance and provisioning of telecommunications networks and services in today’s

open, multivendor environment.

For the implementation of the new service architecture, Jini and JavaBeans, two

complementary technologies developed by Sun Microsystems, were investigated

and Jini was used for service subscription and enterprise service customization.

1.3 Thesis Organization

The rest of the thesis is organized as following. In chapter 2, H.323 standard and

other IP telephony related protocols are analyzed and compared. This is followed

by an analysis of the limitations of the existing service structures defined in these

standards. The basic concept of IN is explained and some existing service architec-

tures are briefly described in chapter 3. In chapter 4, the enabling technologies -

Mobile Agents (MAs), Jini and JavaBeans are discussed, of which MAs and Jini

are used in the newly proposed IP telephony service architecture. JavaBeans might

be one of the possible technologies to implement the advanced service classes.

Then the MA based new IP telephony service architecture is introduced in chapter

5, this is followed by some scenarios of using this MA based service architecture

for service subscription and service invocation. Chapter 6 gives an overview of

Grasshopper, the platform used for developing MA based applications, in this case,

the MA based service architecture. The design and implementation of the MA

based service architecture is then detailed. And finally, chapter 7 summarizes the

thesis with conclusions. It also presents directions for related future works. Refer-

ences and acronyms are listed at the end of this thesis.

IP Telephony Related Standards

4

Chapter 2 IP Telephony Related
Standards

Currently, there are two major protocols that address IP telephony issues. One is

H.323 from International Telecommunication Union - Telecommunication Stan-

dardization Sector (ITU-T) and the other is Session Initiation Protocol (SIP)[9]

from Internet Engineering Task Force (IETF). The first version of H.323 specifica-

tion was approved in 1996 by the ITU-T’s study group 16. Version 2 was approved

in January 1998. The standard is broad in scope and includes both stand-alone and

embedded personal computer technologies as well as point-to-point and multi-

point conferences. Compared to H.323, SIP is rather lightweight, it reuses many of

the header files, encoding rules, error codes, and authentication mechanisms of

HTTP. The following sections will discuss H.323 related protocols and its service

architecture.

2.1 ITU-T Recommendation H.323

2.1.1 H.323

The ITU-T H.323 [10, 11] specification, namely, “Visual telephone systems and

equipment for local area networks which provide a non-guaranteed quality of ser-

vice” (this title was changed to “Packet-based multimedia communications sys-

tems” in 1998), specifies the components, protocols, and procedures to provide

IP Telephony Related Standards

5

multimedia communications over packet-based networks. One of the many media

that H.323 can be applied to is voice over Internet Protocol, i.e., IP Telephony.

Following are some important definitions of H.323:

• Call: Point-to-point multimedia communication between two H.323 endpoints.

A call begins with the call set-up procedure and ends with the call termination

procedure. The call consists of the collection of reliable and unreliable

channels between the endpoints.

• Call signaling channel: Reliable channel used to convey the call set-up and

teardown messages (following recommendation H.225.0) between two H.323

entities.

• Endpoint: An H.323 terminal, gateway, or Multiple Control Unit (MCU). An

endpoint can call and be called. It generates and/or terminates information

streams.

• H.323 Entity: Any H.323 component, including terminals, gateways,

gatekeepers, Multipoint Controllers (MCs), Multipoint Processors (MPs), and

MCUs.

• Local Area Network (LAN) : A shared or switched medium, peer-to-peer

communications network that broadcasts information for all stations to receive

within a moderate-sized geographic area, such as a single office building or a

campus.

• Zone: A zone is the collection of all terminals, gateways, and MCUs managed

by a single gatekeeper.

IP Telephony Related Standards

6

The H.323 components defined by the standard are:

• Terminals which provide real time bi-directional multimedia communication

with another H.323 terminal, gateway, or MCU. They must support voice

communications.

• Gatekeepers (GKs)which provide address translation and control access to

the local area network (LAN) for H.323 terminals, gateways, and MCUs.

gatekeepers can intercept all the call signaling between endpoints and use it to

provide “signaling-based” advanced services. They can provide those services

that cannot be decentralized and implemented by endpoints. Gatekeepers in

H.323 are optional. But if they are present in the network, endpoints must use

their services.

• Gateway that provides real-time, two-way communications between H.323

terminals in the LAN, or to another H.323 Gateway or non-H.323 terminals.

More explicitly, it provides interpretability between H.323 terminals and ITU-

T terminals on the circuit switched networks.

• Multipoint Control Unit (MCU) that provides the capability for three or more

terminals and gateways to participate in a multipoint conference. It may also

connect two terminals in a point-to-point conference which may later develop

into a multipoint conference.

Figure 2.1 shows the scope of H.323. As shown in the figure, all H.323 entities are

connected to the enterprise LAN. They join the gatekeeper’s zone through gate-

keeper discovery and endpoint registration process.

IP Telephony Related Standards

7

The H.323 standard series include H.245 for control, H.225 for connection estab-

lishment, H.332 for large conferences, H.450.x for supplementary services, H.235

[12] for security and H.246 [13] for interoperability with circuit-switched services.

The encoding mechanisms, protocol, and basic operations are somewhat simplified

versions of the Q.931 [14] ISDN signaling protocol.

Figure 2.1 H.323 Scope

2.1.2 H.225.0/RAS/Q.931/H.245

ITU-T recommendation H.225.0, named “Line Transmission of Non-Telephone

Signals”, describes the means by which audio, video, data, and control are associ-

ated, coded, and packetized for transport between H.323 equipment on a packet

based network. This includes the use of an H.323 gateway, which in turn may be

connected to H.320 [15], H.324 [16], or H.310/H.321 [17] terminals on N-ISDN,

GSTN, or B-ISDN respectively. The equipment and procedures are described in

H.323 while H.225.0 covers protocols and message formats. Communication via

an H.323 gateway to an H.322 [19] gateway and thus to H.322 endpoints for guar-

Enterprise LAN

Gatekeeper MCU

TerminalGatewayTerminal

Gatekeeper
 Zone

GSTN

Guaranteed
QoS

 LAN
N-ISDN B-ISDN

IP Telephony Related Standards

8

anteed quality of service (QoS) LANs is also possible. The scope of H.225.0 com-

munication is between H.323 entities on the same packet based network, using the

same transport protocol.

When an endpoint is switched on, it performs a multicast discovery for a GK and

registers with it. Therefore, the GK knows how many users are connected and

where they are located. After GK has been discovered, the endpoint sends a Regis-

tration Administration (RAS) Registration Request (RRQ) to the GK. The RAS

protocol is the key GK protocol. RAS messages are carried in User Datagram Pro-

tocol (UDP) packets exchanged between an endpoint and its GK. The RAS mes-

sage contains information such as the terminal transport address, user alias, and

E.164 telephone number. If the GK accepts the registration, it sends a Registration

Confirm message (RCF), otherwise, it sends a Registration Reject (RRJ) message.

The GK and its registered endpoints are called aZone.

The H.323 call setup life cycle can be split into three phases:

1. RAS: Anytime an H.323 endpoint wants to make a call, it asks for permission

from the gatekeeper by sending a RAS Admission Request (ARQ) message.

This message contains the destination alias, the name or phone number of the

user the calling party wants to contact and other parameters. The GK may grant

the permission for the call by sending back an Admission Confirm (ACF)

message containing the actual address associated with called party alias sent

along with the ARQ. The GK may also reject the request with an Admission

Reject (ARJ) message giving a variety of reasons, such as “not enough

IP Telephony Related Standards

9

bandwidth” or “security violated”. Therefore, during this phase, the GK

accomplishes three different functions: address translation, call authorization

and bandwidth management.

2. Q.931: This phase is derived from ISDN end-to-end call setup signaling

(SETUP, PROCEEDING, ALERTING, CONNECT) and provides the logical

connection between the two endpoints, the calling party and the called party. In

H.323, Q.931 is implemented on top of TCP.

3. H.245: As soon as the Q.931 phase is finished, the two end-points exchange

their capabilities. During this stage they agree on the nature of the information

that will be exchanged through the media channel (audio, video, or data) and

its format (compression, encryption, etc.). H.245 is implemented on top of

TCP.

After these three phases, the Real Time Protocol (RTP)/Real Time Control Proto-

col (RTCP) media channels between the two endpoints are opened according to the

capabilities exchanged, and actual media communication starts. Data communica-

tions are based on the T.120 [20] specification. During the call, dual-tone multifre-

quency (DTMF) touch tones are transmitted over the LAN through the H.245 User

Input Indication message.

Call signaling can be routed through the GK or routed directly between the end-

points. RAS is, by nature, routed by GK. A GK can decide to route Q.931 and

H.245 through itself, so that it can act as a proxy between endpoints. If the GK

intercepts the call signaling, it can perform call management. The GK maitains a

IP Telephony Related Standards

10

list of ongoing H.323 calls in order to keep endpoints’ state or to provide informa-

tion to the bandwidth management function. GK is just a signaling entity and can-

not be called.

Before any call is made, an endpoint may discover/register with a GK. If this is the

case, it is necessary for the endpoint to know the information of the GK it is regis-

tering with. It is also desirable for the GK to know the details of the endpoints that

are registering with it. For these reasons, both the discovery and registration

sequences may contain optional non-standard message parts to allow endpoints to

establish non-standard relationships. At the end of this sequence, both GKs and

endpoints are aware of the version numbers and the non-standard status of each

other.

Figure 2.2 Single Gatekeeper Routed Call Signaling

Figure 2.2 shows a signaling sequence using GK routed call signaling. The unreli-

able channel for registration, admissions and status messaging is called the RAS

channel. The general approach to start a call is to send a mandatory admission

Terminal 1 Gatekeeper Terminal 2

ARQ

ACF

ARQ

ACF

Setup

Setup

CallProceeding

CallProceeding

Alerting

Alerting Connecting

Connecting

IP Telephony Related Standards

11

request on the RAS channel if the endpoint has registered with its GK, followed by

an initial setupmessage on a reliable channel transport address. As a result of this

initial message, a call setup sequence commences based on Q.931 operations with

enhancements described below. The sequence is complete when the terminal

receives in theConnectmessage a reliable transport address on which to send

H.245 control message.

Terminals may support optional Q.931 and H.450 messages. These messages shall

contain all of the mandatory information elements and may contain any of the

optional information elements as defined in Q.931. The H.225.0 endpoint may

ignore all optional messages it does not support. Each H.225.0 endpoint shall be

able to receive and identify an incoming Q.931 or H.450 message as such. It shall

be capable of processing the mandated Q.931 messages, it may also be capable of

processing unknown messages without disturbing operation. Each H.225.0 end-

point shall be able to interpret and generate the information elements mandated for

the respective Q.931 and H.450 messages.

2.2 A Close Look at H.323 Service Architecture

In this section, a brief analysis of H.323 service architecture is provided.

2.2.1 Service Life Cycle and Service Architecture Requirements

While service architecture requirements for IP Telephony have yet to reach matu-

rity, a set of requirements for Telecommunications Information Networking Archi-

tecture Consortium (TINA-C) service architecture described in [21] are gradually

being adopted. In this discussion, these requirements are used to evaluate the ser-

IP Telephony Related Standards

12

vice architecture defined in H.323 and the new service architecture which will be

presented later. The service life cycle described by TINA-C service architecture

consists of: service construction, service deployment, service utilization and ser-

vice withdrawal. Each stage of the service life cycle is explained in [21].

The requirements listed below are used to evaluate IP telephony advanced service

architectures [21]:

• Support of all life cycle phases

• Support of a wide range of services

• Support of multi-player environments

• Rapid service creation and deployment

• Tailored services

• Independent evolution of services and network infrastructures

• Universal access

• Interworking with other advanced service architectures

2.2.2 Limitations of H.323 Supported Service Architecture

Overall, H.323 is a very complicated protocol. H.323 supplementary services are

defined in H.450.x series specifications. For example, Call Transfer is defined in

H.450.2 and Call Forwarding is defined in H.450.3. Until February 2000, 8 supple-

mentary services are defined. Although H.323 specifies mechanisms for activating

and deactivating services, it does not address service creation, deployment and

withdrawal.

IP Telephony Related Standards

13

With the broad usage and wide adoption of IP telephony, customers will expect

more advanced services in addition to the ones defined in H.450.x. With each sup-

plementary service defined in a separate specification, H.323 does not offer a

generic specification, adding more advanced services means adding more specifi-

cations to the already complicated protocol. It does not support the wide range of

services needed to compete in the market place of today, let alone tomorrow. For

example, an IP telephony Virtual Private Network (VPN) service could not be

implemented using the services defined in the H.450.x standards thus far.

Service creation is not addressed in the H.323 protocol. It is also not clear how a

service may be broken down into reusable building blocks, which means that rapid

service creation and deployment are likely to become a problem. Additionally,

there is little room left for third party service providers, which may lead to unfair

competition in the market.

In H.323, service activation and execution are not clearly defined. This leaves

room for designers to reuse IN principles or MA technologies for service utiliza-

tion.

The service architecture supported by H.323 relies on the underlying network

infrastructure. In this service architecture, the gatekeeper manages the supplemen-

tary services, so it can not be ported to another network infrastructure without

building a new service architecture.

Service customization is another very important issue, it provides customers with

the ability to tailor the services to satisfy their special requirements. However, cur-

IP Telephony Related Standards

14

rently, service customization is not addressed in H.323.

According to the H.323 protocol, users can not access services from elsewhere

other than their terminals, and interworking with other advanced service architec-

tures is not addressed.

Despite these limitations, there are many products using H.323 as the standard in

today’s markets. For example, HP OpenCall, Ericsson’s H.323 gatekeeper, Gate-

keeper Platform and Gateway Platform, H.323-compliant video conferencing end-

points by Intel, RADVision's H.320/H.323 Gateway by Lucent Technologies,

Microsoft’s NetMeeting 2.0 supporting the H.323 standard for audio and video

conferencing, Elemedia’s H.323 Protocol Stack, etc., all these products compete

for attention in the IP telephony marketplace.

Background Material

15

Chapter 3 Existing Service Architectures
for Traditional Telephony

In the classical telephony world which is based on circuit switched networks, a

number of service architectures have been developed in the last decade, for exam-

ple, the Intelligent Networks (IN) framework, Telecommunications Management

Network (TMN), Telecommunications Information Networking Architecture

(TINA), etc. The purpose of these service architectures is to increase the quality

and range of services offered in communication networks. In order to compete

with classical telephony in today’s market, one of the challenges that IP telephony

faces is to offer not only the same high quality voice calls, but also a set of call fea-

tures (i.e., advanced services) which classical telephony offers today. While the

high quality of voice calls has not yet been achieved in the IP telephony world,

sound architectures are needed for the control and management of advanced ser-

vices.

In the following sections, the existing service architectures offered in the tradi-

tional telephony world will be discussed briefly with the emphasis on IN, which is

widely used.

3.1 Telecommunications Information Networking

Background Material

16

Architecture

The Telecommunications Information Networking Architecture Consortium

(TINA-C) [22] is a multinational worldwide consortium, which aims at defining

and validating an “open” architecture for telecommunications services in the

emerging broadband, multimedia and “information super-highway” areas. The

architecture is based on distributed computing, object orientation, and other con-

cepts and standards from the telecommunications as well as the computer industry,

e.g. IN, TMN, and Common Object Request Broker Architecture (CORBA). It is

applicable to various networks, broadband (e.g. Asynchronous Transfer Mode

(ATM)) or narrowband.

The basic computing architecture is expanded with concepts and principles gath-

ered in what TINA-C called a Service Architecture. This Service Architecture pro-

vides means to build services and a service support environment. It can be applied

to a wide range of service types including management services, information ser-

vices, transport services and access services.

The service architecture contains a definition of the stakeholders that need to be

considered when defining a TINA-C service and the roles they play. The main

roles that are deemed important are those of users, subscribers, network providers,

service providers, service/network designers, and service/network managers. A

service life-cycle model is also elaborated, in which the need of the service, its

construction, deployment, operation, and withdrawal are addressed.

Background Material

17

3.2 Telecommunications Management Network

The Telecommunications Management Network (TMN) [23] standard was defined

by the ITU-T, to specify management of telecommunications networks. Its princi-

ples aim at the operation, administration, maintenance and provisioning (OAM&P)

of telecommunications networks and services in today's open, multivendor envi-

ronment. The TMN principles recommend the use of management networks for

the management of telecommunications networks and services. Elements in the

telecommunications networks (managed networks) communicate with managing

systems (in the managing networks) via well-defined and standardized interfaces.

It should be emphasized that these interfaces are more than protocols because they

include information models.

The advantage of TMN is that it enables telecommunications companies to inte-

grate legacy systems and newer equipment from different vendors into the same

network management structure. TMN functions will be used as building blocks to

implement service management, network restoration, customer control/reconfigu-

ration and bandwidth management.

In today’s dynamic telecommunication environment, changes are occurring on

many fronts. Services and network technologies are advancing rapidly. Competi-

tion among service providers is intensifying. Customer’s demand for network

access and customized services is increasing.

TMN allows telecommunications companies to cut time to market on new ser-

vices, by separating the management model from the physical details of the net-

Background Material

18

work devices. This means that new services can be released without affecting the

switching network. It also allows telecommunications companies to save their

existing investments, by integrating legacy systems and new equipment into the

same TMN network management structure. TMN makes the network more robust,

by allowing network management to be distributed and decreasing management

traffic over the network. It also makes telecommunications companies more com-

petitive, through the integration of service, management and accounting systems.

This streamlines business processes and improves quality of service.

TMN is more focused on the management of the telecommunications networks

and services, the proposed service architecture only needs the latter part.

3.3 Intelligent Networks

A primary objective for Intelligent Network (IN) [24, 25, 26, 27] is the control of

the definition and deployment of new services to satisfy customer needs. With the

existing network infrastructure, switch vendors define the implementation and

operation of new services and offer them via traditional software-generic release

cycles. These services emphasize availability and operation, resulting in additional

training, documentation, trouble identification, trouble reporting and repair costs.

Achieving service ability across the regional network requires a service platform

that is switch-type independent, widely deployed, and with uniformed execution

environment. To this end, the telecommunications industry is enhancing switch

call models to conform to the Bellcore (now Telecordia) Advanced Intelligent Net-

work (AIN) call model. Rapid service deployment will require advances in service

Background Material

19

logic creation technology and modification of the existing operations infrastructure

to accept programmable operations software packages. Ultimately, OS software

programmability will be essential to meet the rapid deployment objectives. Dis-

tributed call control and call-processing services enable the optimum placement of

service functions within the network. Modularity will allow new services to be

quickly and cost-effectively constructed using existing feature components. Cost

reduction of network operations represents perhaps the greatest challenges and

opportunity for the IN program. The present network operations infrastructure was

developed to efficiently deliver mass-market services. Achieving such high effi-

ciencies has taken a long time, as networks have evolved into their current forms.

This operation infrastructure, however, is not agile, and it interferes with the objec-

tive of achieving rapid service delivery. Operations planners believe that flexibility

and high service-deployment efficiency are simultaneously achievable goals: one

need not be sacrificed to obtain the other.

3.3.1 Intelligent Networks and Service Independent Building Blocks

A key objective of the IN is to provide service-independent functions that can be

used as building blocks to construct a variety of services. This allows easy specifi-

cation and design of new services.

A second key objective is network implementation independent provision of ser-

vices. This objective aims to isolate the services from the way the service-indepen-

dent functions are actually implemented in various physical networks, thus

providing services that are independent of underlying physical network infrastruc-

ture. Figure 3.1 shows the IN approach.

Background Material

20

IN services are based on additional service logic and data on top of different

switched telecommunication networks. Centralized service nodes known as Ser-

vice Control Points (SCPs) control the telecommunications network via a dedi-

cated out of band signaling network, i.e. the international Signaling System No. 7

(SS7) network. The bearer switching nodes, known as Service Switching Points

(SSPs), provide only the basic call processing capabilities. IN service deployment

and management is realized through a Service Management System (SMS), which

interacts with IN elements via a data communication network. Since the SSPs and

the SCP have to interact for each IN service call (usually multiple times), the sig-

naling network and the central SCP may become serious bottlenecks. Further

more, SCP failures would result in global service unavailability.

Figure 3.1 IN Approach

IN Conceptual Model (INCM) is a general framework for developing international

standards for IN. It is structured into four planes - Service Plane (SP), Global

Intelligent
Node
(SCP) Service

program

Service
 data

SSP

SSP SSP

Basic call
processing

Basic call
processing

Basic call
processing

Switch
(SSP)

Switch
(SSP)

Switch (SSP)

Background Material

21

Functional Plane (GFP), Distributed Functional Plane (DFP) and Physical Plane

(PP). The first two planes focus on service creation and implementation, whereas

the last two planes addressing the physical IN architecture. As the IN standards

evolving, each phase of development intended to define a particular set of IN capa-

bilities, known as a Capability Set (CS). CS-1 represents the first actual standard-

ized stage of the IN. It supports the first set of IN services.

Defined by CS-1 is a high-level logical programming interface. This programming

interface consists of a set of Service Independent Building blocks (SIBs) in the

GFP. This is used by the service designer for the definition of service logic pro-

grams (software programs that contain the service logic that runs in an SCP).

Hence, service features in the service plane are defined by one or more SIBs in the

GFP. Some of the SIBs defined by the CS-1 standards are:

• Algorithm: applies a mathematical algorithm to data in order to produce a

result.

• Verify: provides confirmation that the information received is syntactically

consistent with the expected form.

• Basic Call Process: a dedicated SIB responsible for providing basic call

connectivity between parties in the network.

In order to build intelligent network service logic, the SIBs must be chained

together. IN service logic built using a SIB chain, is referred to as global service

logic. At specific points in the call processing, the SIB chain must interact with the

initial basic call in order to correctly handle service requests.

Background Material

22

The IN platform provides greater flexibility for service creation in general and also

for tailoring services to suit the exact requirements of a particular customer. IN-

based services rely on SIBs which are the smallest units in service creation. SIBs

are standard reusable units and can be chained together in various combinations to

realize services. They are defined to be independent of the specific service and

technology for which or on which they will be realized.

Enabling Technologies

23

Chapter 4 Enabling Technologies for A
New Advanced Service
Architecture

In the following sections, some of the enabling technologies such as Java, Mobile

Agent (MA) and Jini that will be used to build the proposed advanced service

architecture are briefly discussed. The Java language, developed by Sun Microsys-

tems, has a number of advantages that make it particularly appropriate for MA

technology. Its major appeals for agents are its portability, the use of bytecodes and

its interpreted execution environment. This means that any system with sufficient

resources can host Java programs.

The Java Virtual Machine and Java's class loading model, coupled with several of

Java features – most importantly serialization, remote method invocation, multi-

threading and reflection – have made building first-class mobile agent systems a

fairly simple task [28].

MA as one of the enabling technologies is introduced in section 4.1. Jini and Java-

Beans (both from Sun Microsystems) are two good complementary candidate

technologies for the implementation of an IP Telephony service architecture, they

are described in section 4.2 and 4.3.

Enabling Technologies

24

4.1 Mobile Agent Technology

Software agents originated from Distributed Artificial Intelligence (DAI) [29]

research. The concept of an agent can be traced back to the early days of 1970s.

There is a broad range of companies and universities that are actively pursuing

agent technology and the number is growing.

An agent can be described as a software component that performs a specific task

autonomously on behalf of a person or an organization [30]. It contains some level

of intelligence, ranging from predefined rules to self-learning Artificial Intelli-

gence (AI) mechanisms. Thus agents operate rather asynchronously to the user and

need to communicate with the user, system resources and other agents as required

to perform their tasks. They are often event - or time – driven.

A mobile agent is one of the seven agent types identified in [29]. An agent is an

object with its private thread of execution, also known as an “active object” [31]. A

MA is the kind of agent that is not bound to the host where it begins execution. It

has the unique ability to transport itself from one host in a network to another. As it

travels, it performs work on behalf of a network user. Agent mobility is probably

the most challenging property, which provides an intelligent agent with the poten-

tial to influence the traditional way of communications and service realization.

Customizability is the result of the diffusion of network services and applications.

It allows users to tailor services according to their specific needs and preferences.

Flexibility and extensibility are due to the dynamic nature of the underlying net-

work infrastructure and service demand [32].

Enabling Technologies

25

In the past, the main motivations for the application of mobile agents [33] were the

lack of capacity to execute programs locally, and the desire to share resources and

improve load balancing in a distributed system. In contrast to these concepts

designed for rather specific or closed environments, new agent concepts aim for

open environments (e.g. the Internet). Today, flexibility is a key design issue for

emerging network service architectures to adapt quickly to the changing customer

service demands. The following are some of the reasons for using MA technolo-

gies for the new service architecture:

• MA-based approach may reduce the network load when compared to an RPC

(Remote Procedure Call) – based approach.

• Asynchronous and autonomous execution provides the possibility for

realization of advanced services by means of using mobile agents.

• Being independent of the underlying network infrastructure makes the service

architecture extendable.

• MAs allow new services to be provided dynamically by either customization or

(re) configuration of existing services.

• MAs provide an effective way for deployment and utilization of advanced

services within a distributed environment.

The mobile agent paradigm and emerging agent technologies are considered key

for implementing open, flexible and scalable services. There are many commercial

and nearly commercial agent platforms, such as Grasshopper (IKV++), Aglets

Workshop (IBM), Voyager (ObjectSpace), Concordia (Mitsubishi) and Odyssey

Enabling Technologies

26

(General Magic). With so many different platforms, interoperability is becoming

an important issue. Sound standards are needed. The Mobile Agent System

Interoperability Facility (MASIF) specification by OMG represents the first effort

for standardizing agent platforms. It is a specification of an agent framework to

support agent mobility based upon the use of the Common Object Request Broker

Architecture (CORBA). Although the MASIF standard stresses language indepen-

dence, it is interesting to note that most notable mobile agent frameworks are

implemented in Java.

In April 1997, CLIMATE – The Cluster for Intelligent Mobile Agents for Tele-

communication Environments, a pool of projects within the European Union col-

laborative research and development program on Advanced Communications

Technologies and Services (ACTS), was launched to explore the usage of agent

technologies. Most of these projects are located within Service Engineering, Secu-

rity and the Communications Management domains. CLIMATE is taking an active

part in contributing to relevant agent standards (e.g., OMG, FIPA) and telecommu-

nication standards (e.g., IN, TMN, UMTS standardization). The Grasshopper MA

framework has been developed under the CLIMATE umbrella. With more efforts

put on to standardize agent platforms, agent platforms are maturing gradually. So

is Java as an enabling tool for implementing MA. MAs have brought tremendous

opportunities for development of MA-based service architecture for IP telephony.

Enabling Technologies

27

4.2 Jini

Jini technology [34] takes advantage of the Java language. It brings network based

services, seamless expansion, reliable smart devices and easy administration to the

network facilities for distributed computing. Jini provides lookup services and a

network bulletin board (or blackboard) for all services on the network. It allows the

search for services connected by the communication infrastructure and stores not

only pointers to the service on the network, but also the code and /or code pointers

for these services.

Figure 4.1 shows the Jini architecture. The components of the Jini system can be

segmented into three categories: infrastructure, programming model and services.

The infrastructure is a set of components that enables building a federated Jini sys-

tem, while the services are the entities within the federation. The programming

model comprises interfaces that enable the construction of reliable services.

Figure 4.1 Jini Architecture

Lookup

Discovery / Join

JavaSpaces Print Shopping Other…

RMI

Java Virtual Machine

Services

Jini
Infrastructure

Programming
Model

Distributed Facilities

• Leasing
• Events
• Transactions

Solaris Mac Windows OS ?

Sparc PPC x86 CPU?

Enabling Technologies

28

The runtime infrastructure of Jini technology resides in two places: Lookup ser-

vices that sit on the network, and the Jini software-enabled devices themselves.

Lookup services are the central organizing mechanisms for Jini technology-based

systems. When devices are plugged into the network, they register themselves with

a lookup service and become part of the federation. When clients wish to locate a

service to assist with some task, they consult the lookup service.

Lookup services organize the services they contain into groups. A group is simply

a set of registered services identified by a string. For example, the “Advanced IP

Telephony Services” group could be populated by the IP telephony services

offered by all enterprise service providers on the local network. The “East Tele-

com” group could be populated by the services offered by all the devices in East

Telecom (including, potentially, one or more members of the “Advanced IP Tele-

phony Services” group). As shown by this example, in which IP telephony services

could belong to both “Advanced IP telephony Services” and “East Telecom”

groups, a service can be a member of multiple groups. Moreover, multiple lookup

services can maintain the same group. They can store the group name and its ser-

vices. This kind of redundancy can help make the Jini technology based system

more fault tolerant. For example, if the “Advanced IP telephony Services” group is

maintained by multiple lookup services, and one of those lookup services goes off

the network, clients will still be able to locate the “Advanced IP telephony Ser-

vices” group via the remaining lookup services.

The runtime infrastructure enables services to register with lookup services

through a process called discovery and join. Discovery is the process by which a

Enabling Technologies

29

Jini technology-enabled device locates lookup services on the network and obtains

references to them. Join is the process by which a device registers the services it

offers with lookup services.

4.2.1 The Discovery Process

The discovery process works like this: Assume you have a Jini technology-enabled

device capable of offering the service of “persistent storage” to a Jini federation.

As soon as you connect the device to the network, it broadcasts a “presence

announcement” by dropping a multicast packet onto a well-known port. Embedded

in the presence announcement are two important pieces of information: the IP

address and port number where this device can be contacted by a lookup service,

and a list of names of groups the device is interested in joining. Assume, for exam-

ple, that the drive you just plugged into the network declares in its presence

announcement packet that it wants to join the “IP Telephony Services” group.

Lookup services monitor the well-known port for presence announcement packets.

When a lookup service receives a presence announcement, it inspects the list of

group names contained in the packet. If the lookup service maintains any of those

groups, it contacts the sender of the packet directly (using IP address and port

number from the packet) and sends it an RMI stub that will allow it to interact with

the lookup service. Thus, in the previous example, assume a lookup service that

maintains the group named “IP Telephony Services” received the device’s

announcement packet. Because the announcement packet mentions this device’s

interest to become a part of the “IP Telephony Services” group, the lookup service

will contact the originator of the announcement packet directly at the specified IP

Enabling Technologies

30

address and port number. The lookup service will send to this device an object that

implements an interface through which the disk drive can register itself, via the

join process, as a member of the “IP Telephony Services” group.

4.2.2 The Join Process

Once a device has discovered a lookup service, it can register its own services on

that lookup service via the join process. The join process begins when a service

connects to a lookup service via the object it received from that lookup service dur-

ing the discovery process. Through the stub, the service sends information about

itself to the lookup service. The lookup service stores the information uploaded

from the device and associates that service with the requested group. At this point,

the service has joined the group on that lookup service.

The information sent from the lookup service includes an instance of a class that

implements a “service interface“. It can also include other attributes, including

applets that provide graphical user interfaces through which users can directly

interact with the service.

The service is identified by the type of the “service interface” uploaded to the

lookup service via the join process. Each kind of service is associated with one

such Java technology-based interface. The lookup service stores and locates a ser-

vice based on the type of that interface. Clients interact with the service by invok-

ing methods on an object that implements that interface. Thus, for a telephony

service, for example, its service interface would be uploaded to a lookup service

Enabling Technologies

31

during the join process and clients will interact with the IP telephony service

through this interface later during the Lookup process.

4.2.3 The Lookup Process

Once a service has joined at least one group in a particular lookup service, that ser-

vice is available for use by clients who query that lookup service. To build a feder-

ation of services that will work together to perform some tasks, a client must locate

and enlist the help of individual services. To find a service, clients interact with

lookup servers via a process called lookup.

The lookup process begins when a client contacts a lookup service and requests

services of a particular type. The type specified in this request is a Java technol-

ogy-based interface that defines the way in which client interact with the service

being requested. This is the “service interface” that uploaded from the service to

the lookup service during the join process.

The lookup service returns to the client zero to many objects that match the type

(that implement the service interface) specified in the client’s request. Once a cli-

ent has an object, it can interact with the service represented by that object. A cli-

ent interacts with a service by invoking methods on the downloaded object that

implements the service interface.

4.2.4 Client / Server Interaction

The client can interact with a service by invoking methods declared in the service

interface on the object that represents the service. In addition, a client can use

reflection to look for other interesting methods declared by that object. If the client

Enabling Technologies

32

finds methods that it understands how to use, it can interact with the service by

invoking those methods as well, even through those methods aren’t part of the ser-

vice interface.

The object that represents the service can grant the client access to the service in

several ways. For example, the object may actually represent the complete service,

which can be downloaded to the client during lookup process and then executed

locally. Alternatively, the object can merely serve as a proxy to a remote service.

When the client invokes methods on the proxy object, the proxy sends requests

across the network to the service, which does the real work. An in-between

approach is also possible. In this case, the local object and a remote service each

do part of the work. Proxies that fully or partially implement the service them-

selves are called smart proxies.

Note that the protocol used to communicate between a proxy object and the remote

service does not need to be understood by the client. This service protocol is a pri-

vate matter decided upon by the service itself. The client can communicate with

the service via this private protocol because the service has in effect injected some

of its own code (the object that represents the service) into the client’s address

space. The injected object could be an RMI stub that enables the client to invoke

remote methods on an object that exists in the address space of the remote service.

Or the injected object could communicate with the service via CORBA, DCOM, or

some proprietary protocol.

Enabling Technologies

33

Different implementations of the same service interface can use completely differ-

ent approaches and completely different protocols. A service may use specialized

hardware to fulfill client requests, or it may do all its work in software. To the cli-

ent, a service just looks like a service, regardless of how it is implemented.

4.2.5 The Jini Technology Programming Model

The Jini technology programming model offers a small set of APIs that can help

users create reliable distributed systems. Most of the interaction between clients

and services during the processes of discover, join, and lookup is built around these

APIs, so clients and services will use the Jini technology programming model dur-

ing those processes. Clients and services can also make use of the programming

model to do the work for which the federation was assembled in the first place.

The Jini technology programming model consists of three parts: leasing, transac-

tions, and distributed events. Leasing provides a way to manage the lifetimes of

distributed objects that can not be managed by the usual rules of garbage collec-

tion. In a single address space, the garbage collector can grab an object when there

are no references to it. But a garbage collector does not know if there are any

remote references to an object. A lease is a grant of guaranteed access to a remote

resource, such as an object, for a specified period of time. It is a guarantee that dur-

ing the period of the lease, the resource won’t be garbage collected away.

For example, if a client wishes to make use of an object of a particular service, the

client can make a lease request to the service that includes a desired lease period.

The service can, at its discretion, award the lease to the client. The service has to

Enabling Technologies

34

decide the duration of the lease, presumably taking the requested time period into

account, and communicate that duration back to the client. If the client does not

renew the lease before the time period decided upon by the service elapses, the ser-

vice can assume the object is no longer needed by the client and can discard the

object. But as long as the client keeps renewing the lease before it expires (and the

service continues to allow the renewal), the service will not garbage collect the

object and the object will remain available to the client.

Another aspect of the Jini technology programming model that can help users

build reliable distributed systems is transaction. The API that supports transactions

enables operations that involve multiple clients and services to either succeed or

fail as a unit. If some aspect of the operation managed by a transaction fails, for

example, one of the involved services disappears from the network, the participat-

ing parties can be instructed to “roll back” to a known good state.

The third aspect of the programming model that facilitates the building of reliable

distributed systems is the distributed event model. This model extends the 1.1 Jav-

aBeans/AWT/Swing event model, which works in a single address space, to dis-

tributed systems. Using the Jini technology event model, an object can register

itself as a listener interested in events generated by a remote source. When the

remote source fires an event, the event will travel across the network to the regis-

tered listeners.

Enabling Technologies

35

4.3 JavaBeans

The JavaBeans component architecture is the platform-neutral architecture for the

Java application environment. It’s the ideal network-aware solution for heteroge-

neous hardware and operating system environments -- within the enterprise or

across the Internet.

The JavaBeans component architecture extends the “Write Once, Run Anywhere”

capability to reusable component development. It enables developers to create

reusable software components that can then be assembled together using visual

application builder tools. Ideally, any Java component conforming to the Java-

Beans component model can be reused in any other JavaBeans compliant applica-

tion. Every Bean not only complies with the JavaBeans model, it also carries with

it all its properties and methods, which can be easily garnered through introspec-

tion – a JavaBeans property whereby any visual builder tool can analyze and report

on how a Bean operates.

The JavaBeans API makes it possible to write component software using the Java

programming language. Components are self-contained, reusable software units

that can be visually composed. Considering using JavaBeans to implement the

supplementary services defined in H.323/H.450.x, these services can be created by

assembling JavaBeans components. When a new service is requested, it will be

very easy to use existing components and create new service components as less as

possible. By saving service creation time, service creators/providers will be more

competitive in the service market. These are possible advantages by using Java-

Enabling Technologies

36

Beans, but due to the time limitation, JavaBeans will not be used to implement the

proposed advanced service architecture.

MA Based Advanced Service Architecture

37

Chapter 5 Mobile Agent Based Advanced
Service Architecture

The traditional telephone system has very primitive end-terminals (telephones) and

considerable intelligence inside the network [35]. Advanced service architectures

separate call setup and call processing functions. On the other hand, in general, the

Internet represents a different balance, with intelligent end-terminals (computers)

and a simple set of functions inside the switches of the network. Switches are com-

posed of software and general-purpose hardware. It is reasonable to foresee that

long-term evolution of IP Telephony will have much more intelligence imple-

mented in the end terminals rather than inside the network. Advanced services such

as call diversion and call transfer, which are implemented inside the telephone net-

work today, can be implemented in user’s computer.

In order to realize this view of IP telephony, appropriate protocols and technolo-

gies are needed. As mentioned previously, there are two protocols previously men-

tioned that address this issue, one is H.323 and the other is SIP.

Supplementary services supported by H.323 are specified in H.450.x. Each of the

defined supplementary services has its own specification. As pointed out in [36],

“How they may be broken down into reusable building blocks is not clear and this

will lead to specification and implementation inefficiency”. The H.323 specifica-

MA Based Advanced Service Architecture

38

tion does not address service control and management. In addition, there are no

third party defined services. But obviously there is room left for developers to

design more flexible service architectures using enabling technologies, e.g., MA.

IP telephony is real-time data communications over IP transport network. As the

Internet is an open, distributed and evolving entity, flexibility, scalability and

robustness are very important issues to be considered when designing new service

architectures. MA technology has the ability to provide solutions addressing all

these issues. As pointed out in [37], the key advantage of MA is its flexibility. It

can enhance service architectures, provide easy service customization and instant

service provisioning.

5.1 A New Advanced Service Architecture Based on Mobile
Agent

Because of the limitations of the existing service architecture defined by H.323, we

propose a MA based advanced service architecture for implementing H.323 sup-

plementary services using the widely accepted service provisioning basis (IN),

enabling technologies (MA, Jini/JavaBeans) and the requirements described in

[21].

The major contributions of this architecture are unified provision of H.323 supple-

mentary services and support of dynamic deployment of services. For these pur-

poses, MA platforms are introduced into the devices that are connected to the

enterprise LAN. H.323 supplementary services are realized by means of mobile

service agents. The key of this approach is to deploy service agents to the service

MA Based Advanced Service Architecture

39

users, i.e., the call parties. This makes the new service architecture open, distrib-

uted and flexible.

The proposed service architecture allows open service creation. Supplementary

services can be created by a different Service Component Creator (SCC) using

Service Components from a Service Component Repository (SCR). Service utili-

zation is realized by activating caller's User Service Agent (USA) and ultimately

activating callee's USA, Call Agent (CA) will be instantiated as the result of USA's

creating new CA. The new service architecture supports universal access to a ser-

vice through the Jini Lookup process. Service customization is also supported by

this service architecture. Each user connected to the network can define his own

service data. Service logic is not embedded in the network nodes but ultimately in

the end user’s terminal. This makes the new service architecture highly distributed.

Because of the USA, messages and procedures for call setup are independent of

the underlying network architecture.

Figure 5.1 MA Based Advanced Service Architecture for IP Telephony

 Service
Component

Creator
LUS

[service]

Enterprise Service

Creator

LUS

[e-service] Internet

Gatekeeper
1

Gatekeeper2

User
11

Enterprise LAN

User
12

User
13

User
21

User
22

User
23

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

Service

Implementation

Repository

Service
Component
Repository

SMUSMU

MA Based Advanced Service Architecture

40

As illustrated in Figure 5.1, H.323 gatekeepers and H.323 terminals (Users) are

connected to the Enterprise LAN. An Agency that provides an agent execution

environment is attached to each gatekeeper/terminal. User terminals join one gate-

keeper’s zone through the gatekeeper discovery and endpoint registration process.

Lookup Services (LUSs) are more like a blackboard where all the available ser-

vices’ proxy code (interface of a service) is placed. A Service Component Creator

(SCC) is responsible for creating components which are made available to Enter-

prise Service Creator (ESC) and advertising its services on a LUS. All the service

components are stored in the Service Component Repository (SCR). These service

components can be assembled into new services by SCC. End users can not sub-

scribe services from SCC directly. The SCC and SCR bring opportunities for third

party service creators and providers, enable them to compete in the service market.

LUSs can be local or remote, they are linked by the Internet. Service Management

Unit (SMU) is a device that can be placed in the gatekeeper, or completely sepa-

rated from the gatekeeper. It manages service subscription using protocols not

defined by H.323, e.g., HTTP. If a service were to be dynamically upgraded, the

SMU would be involved. Additionally, the SMU could be involved in ongoing net-

work management of the services. An SMU can discover an enterprise LUS using

a multicast protocol. A unicast protocol is used to discover remote LUSs that are

outside of the enterprise LAN. In the latter case, the SMU has to know where the

LUS is before it sends out a request to the remote LUSs. An Enterprise Service

Creator is responsible for customizing and assembling the service components into

MA Based Advanced Service Architecture

41

services that are provided to the end user, using the available code from Service

Implementation Repository (SIR).

In the following discussions, we will present one scenario for service subscription

in which only one gatekeeper is involved and one scenario for service utilization

where one gatekeeper is involved. At the same time, all the related components’

functionality will be explained.

5.2 Service Subscription and Utilization Using Mobile Agents

As mentioned before, there are four phases in the service life cycle, they are ser-

vice creation, service subscription, service utilization and service withdrawal. Ser-

vice subscription and utilization of the proposed MA based advanced service

architecture are described in this section. The example of VPN service will be used

to illustrate the key points.

Figure 5.2 SCC Uploads VPN Service Proxy onto the Lookup Service

Internet

 Service
Component

Creator

LUS
[e-service]

Gatekeeper
1

Gatekeeper
2

User
11

Enterprise LAN

User
12

User
13

User
21

User
22

User
23

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

A
ge

nc
y

Service

Implementation

Repository

Service
Component
Repository

Enterprise Service

Creator

[Service]

URL of SER

VPN
Generic Service

Object
(Proxy)

LUS

SMU SMU

Generic VPN proxy object acts as
an intermediate service code that
would arrange downloading of
the actual service code from SER.

Service Component Creator (SCC)
advertises its Generic VPN
service on the LUS. This service
is constructed using Service
Components (e.g., JavaBeans) from
Service Component Repository
by SCC.

MA Based Advanced Service Architecture

42

Figure 5.3 ESC Downloads VPN Service Proxy Object

The subscription of VPN service in the new service architecture consists of three

steps, they are explained in Figure 5.2, Figure 5.3 and Figure 5.4 respectively.

Figure 5.4 ESC Uploads an Enterprise Service Proxy onto an Enterprise Lookup Service

SMU

Enterprise
Service Creator

Proxy
VPN
(GUI)

Features’
Databases

 SecurityInterface

 Service
Component

Creator

LUS
[service]

LUS

[e-service] Internet

Gatekeeper 1

Gatekeeper
2

User11

Enterprise LAN

User12 User
13

User
21

User
22

User 23

A
gency

A
gency

A
gency

A
gency

A
gency

A
gency

A
gency

A
gency

Service

Implementation

Repository

Service
Component
Repository

SMU

Enterprise Service Creator uses
unicast discovery protocol to locate
LUS, as a successful look up, the
proxy of generic VPN service object
is downloaded to Enterprise Service
Creator.

VPN proxy object has an intialization
method, e.g. init () . When this method
is invoked, an applet appears on
the ESC machine, allows ESC to
customize VPN service. During the
customization of VPN service,
databases associated with different
features are generated. ESC uses GUI
to interact with VPN generic service
object.

AccountingInterface

ServiceInteractionInterface

1GatekeeperSMU 2GatekeeperSMU

Internet

Enterprise
Service Creator

Proxy
VPN
(GUI)

1

2

3
LUS

[service]

User 11

Enterprise LAN

User 12 User 13 User 21 User 22 User 23

A
gency

A
gency

A
gency

A
gency

A
gency

A
gency

A
gency

Service

Implementation

Repository

A
gency

2

[e-service]

LUS

FeatureX
Database
Address

ESC uploads its service proxy object
(GUI) onto an enterprise LUS as a
successful result of LUS discovery
using multicast discovery protocol.

When the downloaded VPN proxy
object from the enterprise LUS is
instantiated, a GUI will appear on the
user’s machine, the user can select
desired VPN services. The user will be
able to download the desired services’
proxy code by responding with correct
password.

Service
Component
Repository

 Service
Component

Creator

MA Based Advanced Service Architecture

43

In the first step, as shown in Figure 5.2, the Service Component Creator advertises

a generic VPN service proxy object on the LUS. The service is composed of ser-

vice components which could be a JavaBean or combined JavaBeans. These Beans

can be customized later to meet any specific needs.

The second step is that the Enterprise Service Creator discovers the LUS. Using

the unicast discovery protocol, the ESC downloads the VPN service proxy object

to its machine, and then it uses the Graphical User Interfaces to customize the VPN

service for its enterprise users. The details of this step are outlined in Figure 5.3.

Figure 5.4 shows the third step, in which the Enterprise Service Creator uploads its

customized service proxy object to the enterprise LUS, and then this service proxy

will be downloaded to the Service Management Unit. There is one thing need to be

clarified, that is, there could be many such kind LUSs, and the Enterprise Service

Creator should find (discover) one lookup service that matches it’s searching crite-

ria.

After these three steps, the user has finished the subscription of a customized VPN

service. In the following discussion, how the service is invoked and utilized will be

elaborated.

As mentioned before, service utilization is realized by activating caller’s and

callee’s User Service Agent (USA). As illustrated in Figure 5.5, a USA consists of

a ServiceClass, one or more Code Repository URLs and Service Logic and Data. It

defines how a call will be processed, for example, the management of feature

ordering. A USA can also handle service management.

MA Based Advanced Service Architecture

44

Figure 5.5 User Service Agent

In Figure 5.5, the ServiceClass (call Model) is specific to an end user. The Call

Model component of the USA is an IN call model consisting of two separate sets

of call processing logic: originating and terminating call processing logic. The

originating call processing logic provides support to the Calling Party, and is mod-

eled by the IN Originating Basic Call Model (O-BCSM). The Terminating call

processing logic provides support to the Called Party, and is modeled by the IN

Terminating Basic Call Model (T-SCSM).

The overall call model provides support for a finite state machine with points of

interaction with advanced services. In the traditional IN view of advanced services,

these points of interaction would be implemented as trigger points. In the service

architecture proposed here, using component-based technology, Java Beans could

be used with well-known interfaces and the interaction mode would be via method

calls.

The User Logic in Figure 5.5 represents processing that is required for user sub-

scribed services. For a specific service, in one call processing state, the user logic

ServiceClass

Service Implementation
 Repository URL

User Logic & Data

USA

1

2

CFB

CT
Call Model

MA Based Advanced Service Architecture

45

specifies how to deal with this service and what the next step is in the call process-

ing. For sophisticated services the call model may even make it possible for the

user to write scripts (rules, perhaps) that add a degree of intelligence to the service.

For instance, when a user wants to subscribe the VPN service described before, he

might want to write scripts that filter out particular callers, or callees from a spe-

cific set of network addresses.

The service implementation repository URL gives the reference where the service

code can be found. The User Data in the previous figure is the service-related data.

For example, after a user chooses the Call Forwarding Unconditional (CFU) ser-

vice, he will also be asked to provide the phone numbers to which he would like

the calls to be forwarded. To reiterate, the User Service Agent consists of a Call

Model, one or more Service Implementation Repository URLs and Service Logic

and Service Data.

A USA is constructed when an end user sends a request for service subscription.

The call model will be unique to the user according to the subscribed services at

subscription time. For example, user B may subscribe to Call Forwarding Uncon-

ditional (CFU) and Call Transfer (CT). The ServiceClass component of USA for

user B will be a call model that has different trigger points during a call. For CT,

the service trigger point would be in the originating call model. For CFU, the ser-

vice trigger point would be in the terminating call model. Once constructed, the

USA moves to the user local agency from the gatekeeper. When the user has sub-

scribed several services, the construction of a USA could be a tricky endeavor due

to potential interactions between the services.

MA Based Advanced Service Architecture

46

Figure 5.6 Services Subscription and Activation

The steps for service subscription and activation are summarized in Figure 5.6.

Following are the explanations of each step:

1. Any User can send request to its SMU to subscribe to advanced services.

2. After the SMU receives a service subscription request from the end user, it

multicasts the requests in the network to discover LUSs which have

supplementary services.

3. Following the discovery, the SMU gets a response from the LUS listing all the

supplementary services it has on the network and the addresses/URLs of other

LUSs outside of the enterprise network which have the same kind of services

available. Using this list, the SMU constructs a service subscription graphical

user interface and sends it to the end user stating that these are the

supplementary services available.

SMU

 Service
Component

Creator
LUS
[service]

LUS

[e-service] Internet

Gatekeeper
1

Gatekeeper2

User
11

Enterprise LAN

User
12

User
13

User
21

User
22

User
23

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

A
g

e
n

cy

Service

Implementation

Repository

Service
Component
Repository

SMU

Enterprise Service

Creator

SMU

1

2,3

4

5,6

7

MA Based Advanced Service Architecture

47

4. The end user selects the needed services that he wants, fills in the form and

sends it back to the SMU. The form includes a facility for the user to specify

service related data.

5. The user may not find all the services he wants. In this case, the user should

send a message to the SMU indicating that he wants particular services that are

not in the form, SMU then query other available LUSs external to the

enterprise LAN using the addresses/URLs from the last query.

6. After the SMU receives the completed form from the user, it checks its User

Profile which contains all the services that are already in use by each user. It

then sends a request to the lookup service to download the proxy code

(interfaces) of the services that this user has subscribed to.

7. When the SMU is checking the user profile, the following things may occur:

• The services that the user wants to subscribe are already there, then the

SMU sends a notification to the user indicating that the requested

services are already provisioned.

• Some of the services the user has requested are already available to the

user, then the SMU sends a notification to the user, and sends the

proper request to the LUS.

• If all the services are new to the user, the SMU sends a request to the

lookup service to download the proxy code of the services that the user

has requested as described in step 6.

The service proxy code will be downloaded to the SMU if the service has not been

MA Based Advanced Service Architecture

48

downloaded already. The proxy code contains the interfaces that a gatekeeper

needs to construct a USA, and the location of a SIR where to find the actual service

code (step 6 in Figure 5.6).

There may be many URLs for the addresses of multiple SIRs. A customized USA

will be sent to the user agency, and stays in the user’s terminal. Once the user

receives the USA, it acknowledges the SMU.

After the successful subscription of a service, the service can be invoked from the

call model. The sequence of how the call is set up using USA and CA is as

following:

• If the gatekeeper routed call signaling mode is used, the USA moves to

the gatekeeper agency after construction.

• When user A who has not subscribed to any advanced services starts a

new call, the Basic Call Processing (BCP) functions in the user

terminal will be invoked. If A has subscribed to any advanced services,

a USA associated with A has been stored in the gatekeeper/SMU.

Before A makes a call, it has to send a RAS message to the gatekeeper,

and the gatekeeper will activate A’s USA. A call agent will be

instantiated for A, which will perform call’s originating part for A. As a

result of the function call, a setup message is sent to the called party

(user B) via the gatekeeper.

• Call signaling message callProceeding is sent back.

• SMU checks its user profile, user B has subscribed to CFU and CT, th-

Senarios

49

en there must be a USA for user B. So user B’s USA is activated and a

Call Agent (CA) which implements B’s call model is instantiated. For

instance, the USA can instantiate a CA by doingnew CallAgent (). At

this time, the USA and the CA reside in the same agency. The CA gets

a handle of the USA so that these two can communicate to each other

by method calls. The CA also makes use of the BCP functions available

in the gatekeeper and can obtain the code it needs (i.e. code related to

advanced services) through a URL provided by the USA. Then the CA

will take over the call processing, and acts on behalf of user B who has

subscribed the services.

• The call control messages are sent between user A and the CA on

behalf of user B. So the CA will know whenever it gets an incoming

call, it will then forward the call to the phone number (IP Address) that

B has specified in the service subscription of CFU.

5.3 Usage Scenarios for the New Service Architecture

A MA based advanced service architecture for H.323 IP telephony has been pre-

sented and its usage has been discussed in the previous two sections. In this sec-

tion, four usage scenarios of the service architecture will be presented. One

scenario is the VPN service subscription which has been discussed briefly before.

The other three examples are used to illustrate USA and CA’s movement to deploy

supplementary services using H.323 messaging (with one gatekeeper involved and

gatekeeper routed call signaling). They are Call Forwarding in section 5.3.1, Call

Senarios

50

Transfer in section 5.3.2, and VPN in section 5.3.3. CF and CT are defined by

ITU-T standard H.450.x. VPN is not defined in the standards.

5.3.1 VPN Service Subscription

The subscription sequence of VPN service in the new advanced service architec-

ture is outlined in Figure 5.7.

ASSUMPTION: The messages used in Figure 5.7 are not defined by H.323, they

need to be defined in the future.

DESCRIPTION:

1. The Service Creator Component (SCC) discovers the LUS and advertises the

generic VPN service proxy object.

Figure 5.7 VPN Service Subscription

2. The Enterprise Service Creator (ESC) discovers the generic VPN and

downloads the VPN service proxy object.

UserSMUe - LUSESCLUSSCC

1
2

3

4
5

6

7

8

Senarios

51

3. After the ESC customizes the generic VPN service for its enterprise users, it

discovers and uploads the customized VPN service to the enterprise LUS (e-

LUS).

4. The end user makes a request for VPN service.

5. The SMU discovers the e-LUS that has VPN service and downloads the

service proxy object.

6. The SMU uses the downloaded proxy object to construct a USA, and sends it

to the user agency.

7. When the user receives the USA, it sends an acknowledgment to the SMU

indicating that the USA is received.

8. The SMU sends a message to the end user indicating that the service

subscription process is completed.

5.3.2 Call Forwarding Unconditional Invocation

5.3.2.1 CFU Invocation Using End-to-end Call Signaling

Figure 5.8 shows the invocation process of CFU service using the new advanced

service architecture.

ASSUMPTION: The client application will be responsible for sending messages

specified by the Call Agent to other applications that are dealing with the call setup

process. The CA can accomplish this by calling the client application’s interfaces.

DESCRIPTION:

1. The originator (Caller) application sends a SETUP message to the called party

Senarios

52

Figure 5.8 CFU (End-to-end call Signaling) Invocation

(Callee). A flag will be set in the SETUP message’s NonStandardControl field

to activate the USA, so that a Call Agent is instantiated.

2. After the call agent which resides in the callee’s user agency is instantiated, it

takes over the call processing from the client application and sends out all the

call setup related call signaling messages.

3. The CA sends a RELEASE COMPLETE message to the caller.

4. The CA sends a SETUP message with divertingLegInfo2.inv to the diverted-to

party.

5. The CA sends a FACILITY message with divertingLegInfo1.inv to the calling

party.

6. The diverted-to party sends an ALERTING message to the Call Agent.

7. The CA sends an ALERTING message to the calling party.

Originator CallAgent Called Diverted-to

SETUP

CA instantiated

RELEASE COMPLETE

FACILITY(divertingLegInfo1.inv)

CONNECT (divertingLegInfo3.inv)

CONNECT (divertingLegInfo3.inv)

ALERTING

ALERTING

SETUP(divertingLegInfo2.inv)

1

2

3

3

4

5

5

6

7
7

8
9

9

Senarios

53

8. The diverted-to party sends a CONNECT message to the Call Agent.

9. CA sends a CONNECT message to the calling party.

5.3.2.2 CFU Invocation Using Gatekeeper Routed Call Signaling

Figure 5.9 shows the steps of invoking CFU using gatekeeper routed call signaling

within the new advanced service architecture.

ASSUMPTION: Same as CFU using end-to-end call signaling.

DESCRIPTION:

Following are the detailed description of call set up steps as shown in Figure 5.9:

1. The originator sends a SETUP message to its gatekeeper.

2. The gatekeeper responses with a CALL PROCEEDING message.

3. The gatekeeper sends a SETUP message with divertingLegInfo4.inv to the

called party.

4. The calling party sends a RELEASE COMPLETE message with USA in the

NonStandardData field.

5. Once the gatekeeper receives the USA, a Call Agent is instantiated.

6. The CA sends a SETUP message with divertingLegInfo2.inv to the diverted-to

party.

7. The CA sends a FACILITY message with divertingLegInfo1.inv to the calling

party.

8. The diverted-to party sends an ARQ to the gatekeeper indicating that it will

accept the call.

Senarios

54

Figure 5.9 CFU (Gatekeeper Routed Call Signaling) Invocation

9. The gatekeeper sends an ACF message to the diverted-to party with the

gatekeeper’s call signaling transport address.

10. The diverted-to party sends an ALERTING message to the call agent via the

gatekeeper.

11. The CA sends an ALERTING message to the originator (calling party).

12. The diverted-to party sends a CONNECT with divertingLegInfo3.inv to the

CA via the gatekeeper.

13. The CA sends a CONNECT message with divertingLegInfo3.inv to the

originator (calling party).

5.3.3 Call Transfer Invocation

Figure 5.10 shows the call set up steps for invoking Call Transfer using the new

service architecture.

Diverted-ToOriginator Gatekeeper CalledCallAgent
SETUP

SETUP
CALL PROCEEDING

diveringLegInfo4.inv

RELEASE COMPLETE (NonStandardData = USA)

divertingLegInfo2.inv

FACILITY(divertingLegInfo1.inv)

ARQ

ACF

ALERTING

ALERTING
CONNECT

divertingLegInfo3.inv

CONNECT
divertingLegInfo3.inv

SETUP

CA Instantiated

1

2

3

4

5

6
6

7

8

9

10

10

11

12

12

13

Senarios

55

ASSUMPTION: A CA has been instantiated in the caller agency when the caller

started making call.

Following are the detailed description of the call set up steps as shown in Figure

5.10:

DESCRIPTION:

1. The transferring endpoint (A) sends a FACILITY message with CTInitiate.inv

to the CA.

2. The CA sends a SETUP message with CTSetup.inv, opt.CTUpdate.inv to the

transferred-to endpoint (C).

3. The CA sends a CONNECT message with CTSetup.rr, opt.CTUpdate.inv to

the transferred-to endpoint (C).

4. The CA sends a FACILITY message with CTComplete.inv to the transferring

endpoint (A).

5. The CA sends theTerminal Capability Setto the transferred-to endpoint.

6. The transferred-to endpoint sends TCS = 0 to the CA.

7. The CA sends TCS = 0 to the transferring endpoint.

8. The CA sends TCS = 0 to the transferred endpoint.

9. Close Channels between the transferring point and the transferred endpoint.

10. 10’. The CA sends aTerminal Capability Set(H.245 message) to the

transferred and the transferred-to endpoints.

Senarios

56

Figure 5.10 CT (Gatekeeper Routed Call Signaling) Invocation

11. 11’. The CA sends aMaster/Slave Determination(H.245 message) to the

transferred and the transferred-to endpoints.

12. 12’. The CA sends anOpen Logic Channel(H.245 message) to the transferred

and the transferred-to endpoints.

13. The CA sends a RELEASE COMPLETE message to the transferring endpoint.

5.3.4 Outgoing Call Allowance/Outgoing Call Restriction Invocation

Figure 5.11 shows the invocation of Outgoing Call Allowance (OCA)/Outgoing

Call Restriction (CGR) of VPN service.

ASSUMPTION: Since VPN service is not defined by H.323 when this service

architecture was designed, the H.225.0 call signaling will be used in order to illus-

Close channels

GK

FACILITY(CTInitiate.inv)

A

TCS = 0

RELEASE COMPLETE
(CTInitiate..rr)

FACILITY (CTComplete.inv)

SETUP
(CTSetup.inv, opt.CTUpdate.inv)

CONNECT

CTSetup.rr, optCTUpdate.inv)

Terminal Capabilities Exchange

Master - Slave Determination

Open Logical Channel

Terminal Capability Set C

B C

TCS = 0

TCS = 0

CallAgent

2
2

3
3
4

4
5

5

6
7

8
8
9

10
10 10’

10’
11

11’11
11’

12
12 12’

12’

13

1

Senarios

57

trate the call management sequence with a call agent. This will also make it easier

to understand by using the same style of call sequence diagram. The messages

used here need to be identified in the future.

Following is detailed description of steps in Figure 5.11.

DESCRIPTION:

1. The originator and its gatekeeper starts to exchange the admission messages,

the originator sends an Admission Request (ARQ) to the gatekeeper.

2. An Admission Confirmation (ACF) is sent back to the caller (originator).

3. The caller (originator) application sends a SETUP message to the called party,

a flag will be set in the SETUP message’s NonStandardControl field to activate

the USA that is residing in the gatekeeper.

4. A CA is instantiated.

5. 5’. The CA sends a SETUP message to the called party via the gatekeeper.

6. 6’. The called party sends a CALL PROCEEDING message to the CA via the

gatekeeper.

7. 7’. The CA sends a CALL PROCEEDING message to the originator via the

gatekeeper.

8. The called party sends an ARQ to the gatekeeper.

9. The gatekeeper sends an ACF to the called party.

Senarios

58

Figure 5.11 VPN Service Invocation - OGA/OGR (Gatekeeper Routed Call Signaling)

10. 10’. The called party sends an ALERTING message to the CA via the

gatekeeper.

11. 11’. The CA sends an ALERTING message to the originator via the

gatekeeper.

12. 12’. 13. 13’. The called party sends a CONNECT message to the CA via the

gatekeeper, and the CA sends a CONNECT message to the originator via the

gatekeeper.

Originator Gatekeeper CalledCallAgent

SETUP

CALL PROCEEDING

ARQ

ACF

ALERTING

ALERTING

CONNECT

SETUP

CA Instantiated

1

Check allowed/Restricted phone
number listSETUP

CALL PROCEEDING

ARQ

ACF

CALL PROCEEDINGCALL PROCEEDING

CONNECT CONNECT

CONNECT

ALERTING

ALERTING

3

2

4

6’

6

5’

7’ 7

9

10’

8

10

11’ 11

12’

12

13’ 13

5

Grasshopper Platform

59

Chapter 6 Implementation of the MA
Based Advanced Service
Architecture Using
Grasshopper

In this chapter, implementation details of the new advanced service architecture

will be presented. Grasshopper, the platform on which the implementation of MA

is based, will be introduced first. Then the followed sections will discuss the mech-

anisms of using the Grasshopper platform to realize SMU functionalities. Then an

example implementation of the H.323 supplementary services - Call Forwarding

Unconditional will be described within the Grasshopper platform.

6.1 Grasshopper - Mobile Agent Programming Environment

This section introduces the mobile agent platform - Grasshopper [38]. It is used for

implementing mobile agents (UserServiceAgent and CallAgent).

6.1.1 Grasshopper Platform

Grasshopper is a mobile agent platform that is built on top of a distributed process-

ing environment. By using Grasshopper, the integration of traditional client/server

paradigm and mobile agent technology can be achieved.

Grasshopper Platform

60

6.1.1.1 Distributed Agent Environment

This section describes the structure of the Grasshopper Distributed Agent Environ-

ment (DAE). The DAE is composed of regions, places, agencies and different

types of agents. Figure 6.1 shows an abstract view of these entities.

Up to now, there is no standardized definition of a (software) agent. However,

agents can be characterized by a set of attributes. The only attribute that is com-

monly accepted is autonomy. Taking this into account, an agent is a computer pro-

gram that acts autonomously on behalf of a person or organization.

Figure 6.1 illustrates the hierarchical component structure of grasshopper plat-

form. A region consists of a region registry and agencies.

Figure 6.1 Hierarchical Component Structure of Grasshopper

Region Region Registry

MAF
finder

Management

Communication

Agency

Core Agency Communication

Management

Persistence

Registration

Security

Transport

MAF

AgentSystem

Place

M MM

SS

Grasshopper Platform

61

Two types of agents are known in the Grasshopper context: mobile agents and sta-

tionary agents.

• Mobile Agents: Mobile agents are able to move from one physical network

location to another. In this way, they can be regarded as an alternative or

enhancement of the traditional client/server paradigm. While client/server

technology relies on remote procedure calls across a network, mobile agents

can migrate to the desired communication peer and take advantages of local

interactions. By doing this, several goals can be achieved, such as reduction of

network traffic and reduction of the dependency of network availability.

• Stationary Agents: In contrast to mobile agents, stationary agents do not have

the ability to migrate actively between different network locations. Instead,

they are associated with one specific location.

6.1.1.2 Agencies

An agency is the actual runtime environment for mobile and stationary agents. At

least one agency must run on each host that shall be able to support the execution

of agents. A Grasshopper agency consists of two parts: the core agency and one or

more places.

6.1.1.2.1 Core Agency

Core agencies represent the minimal functionality required by an agency in order

to support the execution of agents. The following services are provided by a Grass-

hopper core agency:

Grasshopper Platform

62

• Communication Service: This service is responsible for all remote interactions

that take place between the distributed components of Grasshopper, such as

location-transparent inter-agent communication, agent transport, and the

localization of agents by means of the region registry.

• Registration Service: Each agency must be able to know about all currently

hosted agents and places, on one hand for external management purposes and

on the other hand in order to deliver information about registered entities to

hosted agents.

• Management Service: It allows the monitoring and control of agents and places

of an agency by (human) users. It is possible, among others, to create, remove,

suspend and resume agents, services and places, to get information about

specific agents and services, to list all agents residing in a specific place, and to

list all places of an agency.

• Security Service: Grasshopper supports two security mechanisms, external and

internal security. External security protects remote interactions between the

distributed Grasshopper components, i.e., between agencies and region

registries. On the other hand, internal security protects interactions between

local Grasshopper components.

• Persistence Service: The Grasshopper persistence service enables the storage

of agents and places (the internal information maintained inside these

components) on a persistent medium. This way, it is possible to recover agents

or places when needed, e.g., when an agency is restarted after a system crash.

Grasshopper Platform

63

6.1.1.2.2 Places

A place provides a logical grouping of functionality inside an agency. For exam-

ple, there may be a communication place offering complex communication fea-

tures, or there may be a trading place where agents offer or buy information or

service access. The name of the place should reflect its purpose.

6.1.1.3 Regions

The region concept facilitates the management of the distributed components

(agencies, places and agents) in the Grasshopper environment. Agencies as well as

their places can be associated with a specific region by registering themselves

within the accompanying region registry. All agents that are currently hosted by

those agencies will also be automatically registered by the region registry. If an

agent moves to another location, the corresponding registry information is auto-

matically updated. A region may comprise of all agencies belonging to a specific

company or organization.

The region registry maintains information about all components that are associated

with a specific region. When a new component (i.e. agency, place, or agent) is cre-

ated, it is automatically registered with the corresponding region registry. While

agencies and their places are associated with a single region for their entire life

time, mobile agents are able to move between the agencies of different regions.

The current location of mobile agents is updated in the corresponding region regis-

try after each migration. By contacting the region registry, other entities (e.g.

agents or human users) are able to locate agents, places, and agencies residing in a

Grasshopper Platform

64

region. Besides, a region registry facilitates the connection establishment between

agencies or agents.

The Grasshopper environment can be established even without a region registry.

However, in this case agents and agencies must know all information that is

required for remote interactions, such as host name, port numbers, communication

protocols, etc.

6.1.1.4 Communication Concepts

The communication facilities of Grasshopper are realized by theCommunication

Service (CS)which is an essential part of each core agency. This communication

service allows location-transparent interaction between agents, agencies and non-

agent-based entities.

6.1.1.4.1 Multi-protocol Support

Remote interactions are generally achieved by means of a specific protocol. The

CS supports communication via theInternet Inter-ORB Protocol(IIOP), Java’s

Remote Method Invocation(RMI) and plain socket connections. To achieve a

secure communication, RMI and the plain socket connection can optionally be

protected using theSecure Socket Layer(SSL).

Within a region, Grasshopper is able to determine dynamically the protocols sup-

ported by a desired communication peer and select the most suitable protocol for

the remote interaction. Since the supported communication protocols are realized

via a plug-in interface, developers can easily integrate new communication proto-

cols by writing their own protocol plug-ins. This way Grasshopper is open for

Grasshopper Platform

65

future requirements that may come up in the changing communication world. The

multi-protocol support of Grasshopper is shown in Figure 6.2.

Figure 6.2 Multi-Protocol Support

6.1.1.4.2 Location Transparency

On one hand the communication service is used internally by the Grasshopper sys-

tem for the agent transport, for locating entities within the DAE, etc. On the other

Figure 6.3 Location Transparent Communication of Grasshopper

hand, agents can use the communication service to invoke methods on other

agents. Since an agent does not care about the location of the desired communica-

Agency

Communication Service

RMI
Plain
Socket/
SSL

IIOP
Plain
Socket

Communication Service

RMI
Plain
Socket/
SSL

Agency

Communication Channel

Agency 1

Communication
Service

Protocol
Plugins

1

Client Agent

2

Server Agent

4

Communication
Service

Remote Interface
for support Protocols Agency 2

3

Communication Channel

Grasshopper Platform

66

tion peer, the communication is totally location-transparent. Within the agent code,

there is no difference between remote method invocations and local method invo-

cations.

This is achieved through the so-calledproxy objectsthat are directly accessed by a

client. The proxy object forwards the call via the communication channel to the

remote target object. By doing this, these proxy objects are equivalent to the client

stubs used by CORBA implementation. Figure 6.3 shows this concept on an

abstract level.

6.1.1.5 Agent Development

6.1.1.5.1 Accessing the Grasshopper Functionality

The functionality of Grasshopper is provided by the platform itself, i.e., bycore

agenciesandregion registries, and as well as byagentsthat are running within the

agencies. By doing this, the platform’s functionality is enhanced. The following

possibilities regarding the access to the Grasshopper functionality must be distin-

guished:

• Agents can access the functionality of the local agency, i.e. the agency in

which they are currently running, by invoking the methods of their super

classesService, StationaryAgentand MobileAgent, respectively. These super

classes are provided by the platform in order to build the bridge between

individual agents and agencies. Each agent has to be derived from one of the

classes,StationAgent or MobileAgent.

Grasshopper Platform

67

• Agents as well as other DAE or non-DAE components, such as user

applications, are able to access the functionality ofremote agenciesandregion

registries.For this purpose, each agency and region registry offers an external

interface which can be accessed via the Grasshopper communication service.

• Agencies and region registries may optionally be accessed through the

MASIF-compliant interfaces MAFAgentSystem and MAFFinder.

6.1.1.5.2 Agent Class Structure

In the context of Grasshopper, each agent is regarded as a service, i.e. as a software

component that offers functionality to other entities within the DAE. Each agent/

service can be subdivided into a common and an individual part. The common (or

core) part is represented by classes that are part of the Grasshopper platform,

namely classesService, MobileAgentandStationaryAgent, whereas the individual

part has to be implemented by the agent programmer.

A Grasshopper agent consists of one or more Java classes. One of these classes

builds the actual core of the agent and is referred to asagent class. Among others,

this class has to implement the methodlive which specifies the actual task of the

agent. The agent class must be derived either from classStationaryAgentor class

MobileAgentwhich in turn inherit from the common super classService. The

methods of these classes represent the essential interfaces between agents and their

environment. The following two ways of method usage have to be distinguished:

• Some of the super class methods of an agent enable the access to the local core

agency. For example, an agent may invoke the methodlistMobileAgents(),

Grasshopper Platform

68

which it has inherited from its super classService, in order to retrieve a list of

all other agents that are currently in the same agency.

• The remaining super class methods are defined to access individual agents.

These methods are usually invoked by other agents or agencies via the

communication serviceof Grasshopper. For instance, any agent may call the

methodgetState() of another agent in order to retrieve information about that

agent’s actual state. Note that this way of access is not performed directly on an

agent instance, but instead on an agent’sproxy object.

Figure 6.4 shows how to access these two different kinds of agent methods.

Figure 6.4 Access of an Agent’s Methods

Two other ways of platform access are available for Grasshopper agents:

• The classRegionRegistrartionPenables an agent to access the region registry

in order to retrieve information about registered components, i.e. agencies,

Agency

A

Communication
Service

Core

Agency

B

CoreCommunication
Service

2a
getState

2b

1a

listHostedAgents

2d
1b

Communication Channel

 1

 2

Agent B invokes method on itself to access the local core agency

Agent A invokes method on (remote) agent B via B’s proxy

Grasshopper Platform

69

places, services and agents. The region registry is accessed through a

corresponding proxy object via the communication service.

• Apart from Grasshopper-specific platform access, the MASIF-compliant

interfaces may be used, i.e. MAFAgentSystem for agencies and MAFFinder

for the region registry.

6.1.1.6 Remotely Accessible Functionality

ClassesService, StationaryAgentandMobileAgentcomprise methods that provide

access to the local agency, i.e., the agency in which an agent is currently running.

However, for this purpose, they provide external interfaces that can be accessed via

the Grasshopper communication service.

6.1.1.6.1 The AgentSystem Interface

In order to contact a remote agency, the client (e.g. an agent, agency, or user appli-

cation) must have access to an agency proxy object. The remotely accessible func-

tionality of each Grasshopper agency can be separated into the following

categories:

• Registration functionality offers detailed information about all places as well

as agents/services that are currently hosted by a remote agency.

• Service control functionality enables the remote control of places and agents/

services within an agency, such as agent creation, suspension, resumption,

transportation and termination.

• Persistence functionality supports the persistent storage of agents/services and

places within a remote agency.

Grasshopper Platform

70

• Listener functionality enables the registration and de-registration of

AgentSystemListeners for remote agencies.

6.1.1.6.2 The AgentSystemListener Interface

This interface can be used to monitor the events occurring in an agency, and to

present them to a user. The listener is notified about any changes associated with

agents/services and places, and it retrieves any output from the agency. Each lis-

tener is identified by a unique identifier. By default, the Grasshopper platform pro-

vides one implementation of the AgentSystemListener interface. However, new

implementations may be realized by platform users in order to e.g., create individ-

ual graphical user interfaces.

6.1.1.6.3 The RegionRegistration Interface

In order to contact a remote region registry, the client must have access to a regis-

try proxy. The functionality of a Grasshopper region registry comprises the regis-

tration and de-registration of agents/services, places, and agencies. In addition,

lookup methods enable the retrieval of specific information about the registered

components.

6.2 Grasshopper’s Limitations

Grasshopper is a lightweight tool to implement mobile agent systems. It relies

heavily on the underlying system resources. Each mobile agent is one thread of

control, if many mobile agents are running at the same time, the performance of

this architecture will be reduced dramatically. The Grasshopper GUI is user

friendly but consumes a lot of system resources.

Design and Implementation of MA Service Architecture

71

6.3 Implementation of the New Service Architecture

Based on the advanced service architecture introduced in chapter 5 and the MA

implementation platform introduced in section 6.1, this section presents the results

of a simple simulation of the proposed advanced service architecture. The discus-

sion will also show how the service subscription and actual call setup are imple-

mented.

6.3.1 Design Issues

6.3.1.1 Platforms and Enabling Technologies

The implementation of the MA based advanced service architecture consists of

two parts. First part is service subscription using Jini, and the second part is service

utilization using Grasshopper. Java is chosen to be the implementation language

because of its special characteristics that are suitable for implementing MAs.

Java’s portability is the main appeal for agents. The use of bytecodes and its inter-

preted execution environment will make the application run in any system with

sufficient resources.

Jini is one of the available distributed technologies. Taking advantage of the Java

programming language, it allows the search of services connected by the commu-

nication infrastructure and stores not only pointers to the service on the network,

but also the code and/or code pointers of these services.

Grasshopper, as described in section 6.1, is a lightweight agent programming envi-

ronment with a friendly graphical user interface. The best thing about Grasshopper

is that, for a user who is new to agent programming, it provides a complete set of

Design and Implementation of MA Service Architecture

72

documentation, from technical overview to user’s guide and programmer’s guide.

It is also easy to install. More conveniently, there are a variety of agent examples

implemented on Grasshopper which illustrate how the agent platform works and

explain how most of the important methods function.

6.3.1.2 Implementation Basis

In the following discussions, some basic concepts used for implementing the

advanced service architecture are introduced.

1. Basic Call Model

The Basic Call Model describes the state machine of establishing a two-party call.

It consists of originating and terminating half-call models. The switching system is

Figure 6.5 Basic Call Model

viewed as two functionally separate sets of call processing logic that create and

maintain a basic two-party call. The call origination logic is modeled by the Origi-

nating Basic Call Model and the call termination logic is modeled by the Terminat-

origNull (11)

proceeding(12)

origAlert (13)

origActive(14)

origDisc (15)

termNull (21)

presenting(22)

termAlert (23)

termActive(24)

termDisc (25)

Originating Terminating

Setup

alerting

proceeding

connect

complete

Design and Implementation of MA Service Architecture

73

ing Basic Call Model. Figure 6.5 shows a simplified version of the IN basic call

model.

2. Threads

Threads enhance performance and functionality of various programming lan-

guages, including Java, by allowing a program to efficiently perform multiple tasks

as if simultaneously. It is a very important tool in implementing the new service

architecture.

Simply, a thread is a program's path of execution. The implementation of the new

service architecture has to compromise the situation that multiple events occur at

the same time. The ideal solution to this problem is the seamless execution of two

or more sections of a program at the same time. Threads allows this to be done. For

example, a socket connection between two users needs a thread to keep the con-

nection open. A user service agent and a call agent are different threads of control.

3. Socket

Transporting packets over internet, sources and destinations are specified as socket

addresses. Each socket address is a communication identifier that consists of an IP

address and a port number. When messages are sent, the messages are queued at

the sending socket until the underlying network protocol has transmitted them.

When they arrive, the messages are queued at the receiving socket until the receiv-

ing process makes the necessary calls to process them.

Design and Implementation of MA Service Architecture

74

There are two communication protocols that one can use for socket programming:

datagram communication (e.g. IP) and connection-oriented stream communication

(e.g. TCP). In our case, call processing signaling messages need to be received in

the order they were sent, and all available signaling messages are processed imme-

diately in the same order they were received. TCP guarantees that the packets sent

will be received in the order in which they were sent, so TCP is chosen to be the

transport protocol.

6.3.2 Class Diagram

Figure 6.6 shows the class diagram of the implementation of the proposed MA

based service architecture. SMU is the center of the whole structure. It downloads

an enterprise service proxy object in response to a user’s service subscription

request. When a user makes a call, the SMU creates aTalkServerto manage the

call set up procedure. ACallServerThreadis generated byTalkServer,and it man-

ages the call signaling processes. In the case of a call agent being activated, it will

transfer signaling messages to the call agent. Following are descriptions of the

main interfaces and classes.

Interfaces:

• CreatorInterface: provides SMU with accessing interfaces to the

ServiceComponentCreator.

• EnterpriseInterface: provides access to theEnterpriseServiceCreator.

• RemoteCreatorInterface: provides remote access to the

ServiceComponentCreator.

Design and Implementation of MA Service Architecture

75

Figure 6.6 Class Diagram

C
re

at
es

C
re

at
es

D
ow

nl
oa

ds

A
dv

er
tis

es

D
ow

nl
oa

ds
A

dv
er

tis
es

Design and Implementation of MA Service Architecture

76

• RemoteEnterpriseInterface: provides remote access to the

EnterpriseServiceCreator.

• SubscribeInterface: provides subscription interface for user.

Classes

• EntityCreator: creates service components that are stored in the

ServiceComponentRepository, advertises its proxy object onto the Jini Lookup

service, has a web server running forCallAgent to download service classes.

• EnterpriseCreator: customizes the services downloaded from the lookup

service, advertises the tailored services proxy code onto Jini lookup service

within the enterprise, provides the service subscription applets.

• EntityCreatorProxy: contains the proxy for the service object.

• EnterpriseProxy: contains the proxy for the service object.

• DiscoverMgr(Uni): unicast discover manager, looks up services from the

enterprise lookup service.

• DiscoverMgr(Multi): multicast discover manager, looks up services outside the

enterprise lookup service.

• SMU: service management unit, manages the service subscription and service

utilization.

• UserServiceAgent: carries the names of the service classes which will be used

by callAgent, and also carries service data, it moves between the gatekeeper

agency and the end user agency.

Design and Implementation of MA Service Architecture

77

• CallAgent: contains call model which is used for the call processing, moves

between the gatekeeper agency and the end user agency.

• UserServiceAgentP: the communication proxy forUserServiceAgent.

• CallAgentP: the communication proxy forCallAgent.

• OrigClient: the end user who makes the call.

• TermClient: the end user who receives the call.

• CallServerThread: manages the call processing, including transferring call

signaling messages and maitaining the sockets between the caller and the

callee.

• TalkServer: generatesCallServerThread.

6.3.3 Service Subscription and Realization Using Jini

In the following discussion, details of implementing service subscription and real-

ization for the new service architecture using Jini will be presented.

1. EntityCreatorProxy, as shown in Figure 6.7, is the object that

ServiceComponentCreator uploads onto the Lookup service which resides

outside an enterprise. It contains all the interfaces for accessing the

EntityCreator, such as the API to get the code repository URL and the API to

get the service subscription Graphical User Interface for subscribing generic

services. Following are the two major APIs:

• getCodeURL()gets the component repository URL, so that a SMU can

download required service component from it.

Design and Implementation of MA Service Architecture

78

• getGUI()gets generic VPN service subscription GUI, this GUI is used

to customize the generic service for the end user by filling out

enterprise specific data.

Figure 6.7 Component Service Creator Proxy Implementation

2. EnterpriseProxy, as shown in Figure 6.8, is the object

EnterpriseServiceCreator uploads onto the Lookup service. SMU invokes

getGUI() to get a service subscription form from the EnterpriseServiceCreator

in response to a user’s service subscription request.

Figure 6.8 Enterprise Service Creator Proxy Implementation

Figure 6.9 Service Component Creator

public class EntiCreatorProxy implements CreatorInterface{
……
public String getCodeURL() throws Exception {……}
public Applet getGUI() {……}
……

}

public class EnterpriseProxy implements EnterpriseInterface{
……
public Applet getGUI() {……}
……

}

public class EntityCreator extends UnicastRemoteObject
Implements RemoteCreatorInterface,

ServiceIDListener{
……
public static void main(String [] args) throws RemoteException{

EntityCreator entityCreator = new EntityCreator(
http://remoteHost:8080);

entityCreator.discoverAndJoin();
}
……

}

Design and Implementation of MA Service Architecture

79

3. EntityCreator(Service Component Creator), as shown in Figure 6.9, discovers

the available lookup service throughout Internet using multicast method, and

uploads its own service onto the found lookup service.

4. EnterpriseCreator,shown in Figure 6.10, is responsible for discovering an

available lookup service which has the same type of service and uploads its

service proxy object onto it. It is also responsible for discovering lookup

services outside the enterprise and looking up for SMU specified service.

Figure 6.10 Enterprise Service Creator Implementation

5. SMU, shown in Figure 6.11, responses to user’s service subscription request,

discovers the lookup service and looks up the type of services user requested. It

also downloads the service proxy object from this lookup service.

Figure 6.11 SMU Implementation

public class EnterpriseCreator implements RemoteEnterpriseInterface{
……
public static void main(String [] args) throws RemoteException{

EnterpriseCreator eCreator = new EnterpriseCreator();
eCreator.discoverAndJoin();
ecreator.discover();
eCreator.lookup();
……

}
……

}

public class SMU {
……
public static void main(String [] args) {

SMU managementUnit = new SMU();
mangementUnit.discover();
managementUnit.lookup();
……

}
……

}

Design and Implementation of MA Service Architecture

80

6.3.4 Service Utilization Realization Using Grasshopper

In this section, a few code examples are presented to show how mobile agents, user

service agent and call agent are implemented using Grasshopper for service utili-

zation in the new service architecture.

Service utilization is performed by the SMU, which can reside in the gatekeeper or

can be a stand-alone device. After a successful service subscription, when the user

clicks the “finish” button on the subscription applet, the SMU creates a new

UserServiceAgent. The sample code for this process is shown in Figure 6.12.

Figure 6.12 User Service Agent Creation Code Example

Once the UserServiceAgent is created successfully, its globally unique identifier

along with the end user’s IP address and name will be stored in the SMU’suser-

Profile, so that when an end user makes or receives a call, the SMU will know with

which user this USA is associated. Figure 6.13 shows the code that implements

this.

Figure 6.13 The UserServiceAgent ID is Stored in the SMU

……
AgentSystem agentSystemP = new AgentSystem(

“de.ikv.grasshopper.agency.AgentSystem”,
gkAddress);

try{
agentInfo = agentSystemP.createService(“ UserServiceAgent”,

codeSource,
 “ServicePlace”,

null);
……

}

……
usaId = agentInfo.getIdentifier();
userProfile.put(userName, IPAddress, usaId);
……
}

Design and Implementation of MA Service Architecture

81

The UserServiceAgent is a mobile agent, it moves to the end user agency after it is

created. When a user makes or receives a call, if there is an USA for the user, the

USA will be activated. If the gatekeeper routed call signaling mode is used, the

USA will move to the gatekeeper agency, otherwise it will stay in the end user

agency.

The classde.ikv.grasshopper.agency.MobileAgenthas to be inherited by each

Grasshopper mobile agent. Methodlive() is the core of each agent. The method

must be overridden, since it specifies the designated task. Methodaction()can be

used by agent programmers to implement any agent behavior that a user will be

able to invoke. Methodmove()moves the agent to another location. Optionally, the

name of a method can be specified as an input parameter. In this case, the specified

Figure 6.14 A Sample Implementation of Method live() of USA

public void live(){
if (state == 0){

try{
String remoteAddress = new String(userAddress);
try{

remote = new Location(remoteAddress);
String [] homeAddress = Configurator.getConfigurator().

getCommunicationServer ().
getReceiverAddressAsString ();

home = new Location(homeAddress);
state++;
move(remote);

} catch (Exception e){……}
} catch (Exception e){……}

else if (state == 1){
try{

state++;
move(home);

} catch (Exception e){……}
}
else if (state == 2){

state = 0;
this.setState(State.SUSPENDED);

}
}

Design and Implementation of MA Service Architecture

82

method will be executed directly after the migration. If no method name is given,

the live() method will be executed by default.

Figure 6.14 and Figure 6.15 show two pieces of code that are sample implementa-

tion of thelive() method andaction() method fromUserServiceAgent.

• A sample implementation of methodlive() is shown in Figure 6.14, in which

the USA is created in the gatekeeper withhomeAddres. The USA will move to

a remote user agency whose address isremoteAddress.It changes its state as it

moves to another agency,“state ==2” means that the USA has moved back to

the gatekeeper. Because there is no clear instruction for the USA as what to do

next, it is suspended by usingstate.setState(State.SUSPENDED).

• A sample implementation of methodaction() is shown in Figure 6.15. When a

user makes a call, if there is a usaId stored in the SMU’suserProfileof either

the calling party or the called party, a CA will be instantiated from the USA

and this CA’s code is downloaded fromcodeSource.

Figure 6.15 Sample Implementation of action() Method

6.3.5 Simulation Results

In this section, some of the simulation results are presented to show how the new

service architecture is used for service subscription and service invocation. The

public void action(){
this.setState (State.ACTIVE);
ServiceInfo agentInfo = createService (“CallAgent”,

codeSource,
 “ServicePlace”,

new Object [] {getIdentifier().toString(),
gkAddress});

}

Design and Implementation of MA Service Architecture

83

Figure 6.16 Advanced Service Subscription GUI

Figure 6.17 Service Customization Form for CFU

following figure shows the service subscription form a user gets. When the user

clicks “CFU” on Figure 6.16, a form for customization of CFU service will pop up

as shown in Figure 6.17. The user can specify which period of time his phone call

Design and Implementation of MA Service Architecture

84

should be forwarded. Once the customization is finished, the user clicks the

“Done” button.

The following window as shown in Figure 6.18 illustrates the log of messages

passed by theTalkServer between parties.

Figure 6.18 TalkServer Message Log

Figure 6.19 Caller Messaging Information Log

Design and Implementation of MA Service Architecture

85

Figure 6.19 shows the log of messaging information of the user who makes the

phone call. The originating messages are sent to TalkServer and the terminating

messages from called party are received, as recorded in the figure.

Figure 6.20 Message log of Forwarded-to Terminal

Figure 6.20 is a snapshot of the log for the user terminal with IP address

134.117.57.178. Figure 6.21 shows a snapshot of the log for the user terminal with

IP address 134.117.57.163. The phone call is redirected to the IP Address 134.117.

57.178 specified by the user since the user has subscribed to the CFU service.

Figure 6.21 Message log of the forwarded-to Terminal

Design and Implementation of MA Service Architecture

86

Figure 6.22 USA Construction

Figure 6.22 illustrates that an USA has been constructed in the gatekeeper’s

agency in the ServicePlace according the information received from the end user

during the service subscription.

Figure 6.23 USA Moving to the End User’s Agency

Design and Implementation of MA Service Architecture

87

Figure 6.23 shows that after the construction of the USA in the gatekeeper’s

agency, the usa moved to the end user’s agency in the servicePlace.

Figure 6.24 Instantiation of a CA

Figure 6.24 shows the MAs in the gatekeeper’s agency. An USA moved back to the

gatekeeper’s agency from the end user’s agency and when a user associated with

this USA makes or receives a phone call, a CA is instantiated in the servicePlace.

The above figures have shown a set of test results which provide visual information

indicating how the new service architecture can be implemented and utilized.

There could be other scenarios that come out of this implementation depending on

the IP addresses specified by the end user.

6.3.6 Limitation of the Simulation

This simulation is presented to show an example as how the new advanced service

architecture can be implemented. It is by no means a complete or the only imple-

mentation. There are some limitations of this simulation:

Design and Implementation of MA Service Architecture

88

• Due to the limitation of Grasshopper’s demonstration version, only 3 mobile

agents can be created at maximum, more advanced services will be hard to

simulate using the current Grasshopper infrastructure.

• The performance of the simulation is hard to measure because of the low speed

of the machine used in the experiment.

Conclusions

89

Chapter 7 Conclusions And Future Work

In this thesis, a new Mobile Agent based advanced service architecture for IP

telephony is presented. A sample implementation of the service architecture using

Grasshopper and Jini is outlined to show how the service architecture supports

flexible service subscription and service invocation. From the above discussions,

we come to some conclusions and some working items for future research.

7.1 Conclusions

From the previous presentation and the testing results, we can see that the pro-

posed mobile agent based advanced service architecture solution is flexible, dis-

tributed and open. Comparing to the traditional service architectures, it can:

• support universal access to services through the Jini Lookup process.

• enable the provision of flexible software solutions, where H.323

supplementary services software is partitioned into mobile service agents

realizing dedicated functionalities (e.g., IN service features).

• enable on demand provision of customized supplementary services by

dynamically constructing user service agents using service code downloaded

from the SCC or the ESC to the gatekeeper.

Conclusions

90

• allow a decentralized realization of supplementary services, by means of

bringing the user service agent directly onto the user terminals.

On the other hand, there are some issues of this mobile agent service architecture

that need to be noted or addressed in future study:

• It consumes a lot of resources due to the fact that each user who has subscribed

the advanced services needs a USA and a CA. This may not be an issue as

computer speed and memory increases dramatically from year to year.

• Call set up procedure relies on the end users’ computer resources. If the

processing capability is limited, this process would take longer time. But same

as the previous point, this may not be a problem at all as computer resources

become cheaper and cheaper.

• Using this service architecture, end users should have the ability to tailor their

own services which means that they have to be clear what kind of services they

want. This issue can be solved by providing a default service setting for the

customer.

• The presented simulation of the new service architecture is based on the IP

address of the end user’s computer, this leads to the possibility that people

other than the owner can use it if they know the correct login name and

password. The security issue is for sure a future work direction.

7.2 Future Work

During the course of this work, several directions have been identified for future

research and development.

Conclusions

91

Security of mobile agents is a very important issue. What are the security mecha-

nisms that can be used to prevent the system from malicious agents’ attack? More

research is needed to develop reliable security for mobile agents.

Another direction for future research is to investigate the performance of the newly

proposed service architecture, and understand how the system works while han-

dling a high volume of calls simultaneously.

More supplementary services such as call transfer can be implemented, using the

proposed service architecture. Additional services will likely to improve and

enhance the service architecture as well.

Acronyms

92

Appendix A Acronyms

AIN Advanced Intelligent Network

CA Call Agent

CFU Call Forwarding Unconditional

CORBA Common Object Request Broker Architecture

CT Call Transfer

DAI Distributed Artificial Intelligence

DFP Distributed Functional Plane

ESC Enterprise Service Creator

GFP Global Functional Plane

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IN Intelligent Networks

INCM Intelligent Networks Conceptual Model

IP Internet Protocol

ITU-T International Telecommunication Union - Telecommunication
Standardization Sector

LAN Local Area Network

LUS Lookup Service

MA Mobile Agent

OCA Outgoing Call Allowance

OGR Outgoing Call Restriction

Acronyms

93

PP Physical Plane

PSTN Public Switched Telephone Network

RPC Remote Procedure Call

SCC Service Component Creator

SCP Service Control Point

SCR Service Component Repository

SIB Service Independent Building Block

SIP Session Initiation Protocol

SIR Service Implementation Repository

SMS Service Management System

SMU Service Management Unit

SP Service Plane

SS7 International Signaling System No. 7

SSP Service Switching Point

TINA Telecommunications Information Networking Architecture

TINA-C Telecommunications Information Networking Architecture
Consortium

TMN Telecommunications Management Network

USA User Service Agent

VPN Virtual Private Network

References

94

Appendix B References

1. “Internet Telephony”, http://www.webproforum.com/siemens2.

2. D. B. Lange, “Present and Future Trends of Mobile Agent Technology”,

Second International Workshop on Mobile Agents’98 (MA’98) Stuttgart,

Germany, September 1998.

3. ITU-T Rec. H.323, “Visual Telephone Systems and Terminal Equipment for

Local Area Networks which Provide a Non-Guaranteed Quality of Service”,

1996.

4. ITU-T Rec. H.225.0, “Media Stream Packetization and Synchronization for

Visual Telephone Systems on Non-Guarateed Quality of Service LANs”, 1997.

5. ITU-T Rec. H.245, “Control Protocol for Multimedia Communication”, 1998.

6. ITU-T Rec. H.450.1, “Generic Functional Protocol for the Support of

Supplementary Services in H.323”, 1998.

7. ITU-T Rec. H.450.2, “Call Transfer Supplementary Service for H.323”, 1998.

8. ITU-T Rec. H.450.3, “Call Diversion Supplementary Service for H.323”,

1998.

9. H. Schularinne, J. Rosenbery, “comparison of H.323 and SIP”, http://

www.cs.columbia.edu/~hgs/sip/h323.html.

References

95

10. “H.323 Tutorial“, http://www.webproforum.com/trillium/index.html.

11. A. Gary, “H.323: The Multimedia communications Standard for Local Area

Networks”, IEEE Communications Magazine, December 1996.

12. ITU-T Rec. H.235, “Security and Encryption for H-series (H.323 and H.245-

based) Multimedia”, 1998.

13. ITU-T Rec. H.246, “Internetworking of H-series Multimedia Terminals with

H-series Multimedia Terminals and Voice/voiceband Terminals on GSTN and

ISDN”, 1998.

14. ITU-T Rec. Q.931, “ISDN User-network Interface Layer 3 Specification for

Basic Call Control”, 1998.

15. ITU-T Rec. H.320, “Narrow-band Visual Telephone Systems and terminal

Equipment”, 1999.

16. ITU-T Rec. H.324, “Terminal for Low Bit-rate Multimedia Communication”,

1998.

17. ITU-T Rec. H.310, “Broadband Audio Visual Communication Systems and

terminals”, 1998.

18. ITU-T Rec. H.321, “Adaption of H.320 Visual Telephone Terminals to B-

ISDN Environments”, 1998.

19. ITU-T Rec. H.322, “Visual Telephone Systems and Terminal Equipment for

Local Area Networks which Provide a Guaranteed Quality of Service”, 1996.

20. ITU-T Rec. T.120, “Data Protocols for Multimedia Conferencing”, 1996.

References

96

21. R. H. Glitho, “Advanced Services Architectures for Internet Telephony: State

of the Art and Prospects”.

22. R. Minetti, E. Utsunomiya, “The Service Architecture”, http://www.tinac.com/

specifications/abstract.htm.

23. TMN, http://www.uhc.dk/tmn.html.

24. T. Magedanz, “Intelligent Networks”, International Thomas Computer Press,

1996.

25. T. Jan, “Intelligent Networks”, Mass., Artech House, 1994.

26. V. Avery and J. Matta, “Intelligent Networks: A Concept for the 21st Century”,

http://www.dse.doc.ic.ac.uk.

27. IN, http://www.webproforum.com/microlegend/index.html.

28. J. Kiniry, D. Aimmerman, “A Hands - On Look At Java Mobile Agents”, http:/

/computer.org/internet/ic1997/w402labs.htm.

29. H. S. Nwana, “Software Agents: An Overview”, Knowledge Engineering

Review, Vol. 11, No.3, pp.1-40, september, 1996.

30. M. Breugst and T. Magedanz, “Mobile Agent - Enabling Technology for

Active Intelligent Network Implementation”, IEEE Network, May/June 1998.

31. D. B. Lange, “Present and Future Trends of Mobile Agent Technology”,

Second International Workshop on Mobile Agents’98 (MA’98) Stuttgart,

Germany, September 1998.

32. A. Fuggetta, G. P. Picco, G. Vigna, “Understanding Code Mobility”, IEEE

Transactions on Software Engineering, vol. 24, 1998.

References

97

33. D. Chess, C. Harrison, A. Kershenbaum, “Mobile agetns: Are they a good

idea? - update”, Mobile Object Systems: Towards the Programmable Internet,

pp.46-48/ Springer-Verlag, April 1997. Lecture Notes in computer Science

No.1222.

34. Jini specifications, http://www.sun.com/jini/specs.

35. D. Clark, “A Taxonomy of Internet Telephony applications”, http://itel.mit.edu/

itel/publications.html.

36. B. Pagurek, T. White, “A Quick Evaluation of H.323/H.450”, Technical Report

SEC-99-02, Systems and Computer Engineering, Carleton University, April

1999.

37. T. Magendanz, K. Rothermel, S. Krause, “Intelligent Agents: An Emerging

Technology for Next Generation Telecommunications?”, INFOCOM 96, San

Francisco, USA.

38. Grasshopper, http://www.ikv.de/products/grasshopper/grasshopper.html.

